A New Theory for Trapping Light Particles Aims to Advance Development of Quantum Computers
July 5, 2019 | City University of New YorkEstimated reading time: 3 minutes

Quantum computers, which use light particles (photons) instead of electrons to transmit and process data, hold the promise of a new era of research in which the time needed to realize lifesaving drugs and new technologies will be significantly shortened. Photons are promising candidates for quantum computation because they can propagate across long distances without losing information, but when they are stored in matter they become fragile and susceptible to decoherence. Now researchers with the Photonics Initiative at the Advanced Science Research Center (ASRC) at The Graduate Center, CUNY have developed a new protocol for storing and releasing a single photon in an embedded eigenstate — a quantum state that is virtually unaffected by loss and decoherence. The novel protocol, detailed in the current issue of Optica, aims to advance the development of quantum computers.
“The goal is to store and release single photons on demand by simultaneously ensuring the stability of data,” said Andrea Alù, founding director of the ASRC Photonics Initiative and Einstein Professor of Physics at The Graduate Center. “Our work demonstrates that is possible to confine and preserve a single photon in an open cavity and have it remain there until it’s prompted by another photon to continue propagating.”
The research team used quantum electrodynamics techniques to develop their theory. They investigate a system composed of an atom and a cavity — the latter of which is partially open and therefore would normally allow light trapped in the system to leak out and be quickly lost. The research team showed, however, that under certain conditions destructive interference phenomena can prevent leakage and allow a single photon to be hosted in the system indefinitely. This embedded eigenstate could be very helpful for storing information without degradation, but the closed nature of this protected state also creates a barrier to exterior stimuli, so that single photons also cannot be injected into the system. The research team was able to overcome this limitation by exciting the system at the same time with two or more photons.
“We proposed a system that acts as a closed box when excited by a single photon, but it opens up very efficiently when we hit it with two or more photons,” said Michele Cotrufo, first author of the paper and a postdoctoral fellow with the ASRC Photonics Initiative. “Our theory shows that two photons can be efficiently injected into the closed system. After that, one photon will be lost and the other will be trapped when the system closes. The stored photon has the potential to be preserved in the system indefinitely.”
In realistic systems, additional imperfections would prevent perfect confinement of photons, but the research team’s calculations showed that their protocol outperforms previous solutions based on a single cavity.
The authors also showed that the stored excited photon can later be released on demand by sending a second pulse of photons.
The team’s finding has the potential to solve critical challenges to quantum computing, including the on-demand generation of entangled photonic states and quantum memories. The group is now exploring avenues to experimentally verify their theoretical work.
About the Advanced Science Research Center
The Advanced Science Research Center (ASRC) at The Graduate Center, CUNY is a world-leading center of scientific excellence, which elevates scientific research and education at CUNY and beyond through initiatives in five distinctive, but broadly interconnected disciplines: nanoscience, photonics, neuroscience, structural biology, and environmental sciences. The ASRC promotes a collaborative, interdisciplinary research culture where renowned scientists advance their discoveries using state-of-the-art equipment and cutting-edge core facilities.
About The Graduate Center of The City University of New York
The Graduate Center, CUNY is a leader in public graduate education devoted to enhancing the public good through pioneering research, serious learning, and reasoned debate. The Graduate Center offers ambitious students more than 40 doctoral and master’s programs of the highest caliber, taught by top faculty from throughout CUNY — the nation’s largest public urban university. Through its nearly 40 centers, institutes, initiatives, and the Advanced Science Research Center, The Graduate Center influences public policy and discourse and shapes innovation. The Graduate Center’s extensive public programs make it a home for culture and conversation.
Suggested Items
AI Chips for the Data Center and Cloud Market Will Exceed US$400 Billion by 2030
05/09/2025 | IDTechExBy 2030, the new report "AI Chips for Data Centers and Cloud 2025-2035: Technologies, Market, Forecasts" from market intelligence firm IDTechEx forecasts that the deployment of AI data centers, commercialization of AI, and the increasing performance requirements from large AI models will perpetuate the already soaring market size of AI chips to over US$400 billion.
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
OSI Systems Receives $36 Million Contract for Aviation Security Systems
05/08/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Security division received a contract award for approximately $36 million to deploy and service airport screening solutions for a prominent international airport in the Middle East.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.