Collaboration Unlocks New Magnetic Properties for Future, Faster, Low-Energy Spintronics
July 8, 2019 | FleetEstimated reading time: 2 minutes
A theoretical–experimental collaboration across two FLEET nodes has discovered new magnetic properties within 2D structures, with exciting potential for researchers in the emerging field of ‘spintronics.’
Spintronic devices use a quantum property known as ‘spin’ in addition to the electronic charge of conventional electronics. Spintronics thus promise ultra-high speed low-energy electronic devices with significantly enhanced functionality.
A single ‘bit’ of a conventional device can take two states: represented as 0 and 1. The computing power of conventional electronics thus increases by 2 to the power of the number of bits (2n). One bit: two states, two bits = four states, three bits = eight states, a thousand bits = 10300 states.
In comparison, a single ‘bit’ of a spintronic device has four states: 0-spin up, 0-spin down, 1-spin up, 1-spin down. Its power thus increases by four to the power of the number of bits (4n). One bit: four states, two bits = 16 states, three bits = 64 states, a thousand bits = 10600 states.
The RMIT–UNSW study discovered never-before-seen magnetic properties in devices known as vdW hetero-structures comprising several layers of novel, 2D materials.
The latest results show that vdW spintronics could provide devices with more functionality, comparing with the traditional spintronic approaches. Further research could generate devices with significant industrial applications.
Background
Two-dimensional (2D) ferromagnetic van-der-Waals (vdW) materials have recently emerged as effective building blocks for a new generation of ‘spintronic’ devices. When layered with non-magnetic vdW materials, such as graphene and/or topological insulators, vdW hetero-structures can be assembled to provide otherwise unattainable device structures and functionalities.
The material studied was 2D Fe3GeTe2 (FGT), a metal found to display promising ferromagnetic properties for spintronic devices in a previous FLEET study.
Surprising Discoveries
“We discovered a previously unseen mode of giant magneto-resistance (GMR) in the material, says FLEET PhD and study co-author Sultan Albarakati.
Unlike the conventional, previously-known two GMR states (ie, high resistance and low resistance) that occur in thin-film hetero-structures, the researchers also measured antisymmetric GMR with an additional, distinct intermediate resistance state.
“This reveals that vdW ferromagnetic hetero-structures exhibit substantially different properties from similar structures,” says Sultan.
This surprising result is contrary to previously held beliefs regarding GMR. It is suggestive of different underlying physical mechanisms in vdW hetero-structures, with potential for improved magnetic information storage.
Theoretical calculations indicate that the three levels of resistance are the result of spin-momentum-locking induced spin-polarised current at the graphite/FGT interface.
“This work has significant interest for researchers in 2D materials, spintronics, and magnetism,” says co-author FLEET PhD Cheng Tan. “It means that ‘traditional’ tunnelling magnetoresistance devices, spin-orbit torque devices and spin transistors may reward re-investigated using similar vdW hetero-structures to reveal similarly surprising characteristics.”
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Delta to Acquire Noda RF Technologies to Enhance its Power Solutions Portfolio for the Semiconductor Industry
10/30/2025 | PRNewswireDelta Electronics, Inc., a leader in power management and smart green solutions, today announced the acquisition of 90.23% stake of Japan's Noda RF Technologies Co., Ltd. (NRF) through its subsidiary Delta Electronics (Netherlands) B.V. for JPY 5,024 million (approximately NT$1,034 million).
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Elementary, Mr. Watson: Heat—The Hidden Villain of Power Electronics
10/28/2025 | John Watson -- Column: Elementary, Mr. WatsonIf electricity were a group of college students, then power electronics and the PCB designers who dive into it would insist on driving the car on every road trip because they know the car inside and out—they’re the students with jumper cables in the trunk, a tire pressure gauge in the glove box, and snacks stashed under the seat. While the others argue over playlists and directions, power electronics is busy ensuring the alternator doesn’t fry, the headlights don’t dim, and everyone reaches the destination with fuel still in the tank.
Infineon to Purchase Long-Term Green Electricity from Wind Farms in Brandenburg, Germany and Solar Plants in Spain
10/27/2025 | InfineonInfineon Technologies AG has concluded Power Purchase Agreements (PPA) with PNE AG and Statkraft for green electricity.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
10/24/2025 | Andy Shaughnessy, I-Connect007This week, we have quite a bit of international content in this week’s list of must-reads. Nothing happens in a vacuum, including electronics manufacturing and design, and this has been quite an eventful year. How many of us are now tariff experts? I’m certainly not, but that hasn’t stopped me from opining about the situation.