Terahertz Technology Escapes the Cold
July 10, 2019 | ETH ZurichEstimated reading time: 5 minutes
Reaching 200 K was an impressive feat. That temperature, however, is just below the mark where cryogenic techniques could be replaced with thermoelectric cooling. That the record temperature did not move since 2012 also meant that some sort of 'psychological barrier' started to go up -- many in the field started to accept that THz QCLs would always have to operate in conjunction with a cryogenic cooler. The ETH team has now broken down that barrier. Writing in Applied Physics Letters, they present a thermoelectrically cooled THz QCL, operating at temperatures of up to 210?K. Moreover, the laser light emitted was strong enough that it could be measured with a room-temperature detector. This means that entire setup worked without cryogenic cooling, further strengthening the potential of the approach for practical applications.
Bosco, Franckié and their co-workers managed to remove the 'cooling barrier' due to two related achievements. First, they used in the design of their QCL stacks the simplest unit structure possible, based on two so-called quantum wells per period (see the figure, panel d). This approach has been known to be a route to higher temperatures of operation, but at the same time this two-well design is also extremely sensitive to smallest changes in the geometry of the semiconductor structures. Optimizing performance relative to one parameter can lead to degradation relative to another. With systematic experimental optimization being not a viable option, they had to rely on numerical modelling.
This is the second area where the group has made substantial progress. In recent work, they have established that they can accurately simulate complex experimental QCL devices, using an approach known as nonequilibrium Green's function model. The calculations have to be carried out on a powerful computer cluster, but they are sufficiently efficiently that they can be used to search systematically for optimal designs. The group's ability to accurately predict the properties of devices -- and to fabricate devices according to precise specifications -- gave them the tools to realize a series of lasers that consistently work at temperatures that could be reached with thermoelectrical cooling (see the figure, panels a and b). And the approach is by no means exhausted. Ideas for pushing the operational temperature further up exist in the Faist group, and preliminary results do look promising.
Filling the THz Gap
The first demonstration of a terahertz quantum cascade laser operating without cryogenic cooling constitutes an important step towards filling the 'THz gap', which has long existed between the mature technologies for microwave and infrared radiation. With no moving parts or circulating liquids involved, the sort of thermoelectrically cooled THz QCLs now introduced by the ETH physicists can be more easily applied and maintained outside the confines of specialised laboratories -- lifting further the lid of the 'THZ treasure chest'.
Page 2 of 2Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.