Making Light Behave in Useful Ways
July 10, 2019 | A*STAREstimated reading time: 2 minutes

By integrating nanoantennas with liquid crystals, A*STAR researchers have created a metasurface that allows fine dynamic control over the properties of light.
From holograms to augmented reality devices and optical sensors, a common enabling principle behind these innovations is the ability to precisely manipulate light. Over the years, researchers have created materials that allow them to control how light behaves. A familiar example would be liquid crystals, used in television and mobile phone displays.
However, the resolution of liquid crystal-based spatial light modulators leaves much to be desired—each pixel ranges from three to tens of micrometers. Next-generation light detection and ranging (LIDAR) and display technologies require higher resolution and wider steering angles than currently afforded by liquid crystals.
Researchers led by Arseniy Kuznetsov at A*STAR’s Institute of Materials Research and Engineering (IMRE) have now overcome these restrictions using metasurfaces—materials comprising nanostructures that are smaller than the wavelengths of light. “When an incident light beam is passing through or reflected from a metasurface, its phase and amplitude transform in a desired fashion to achieve different functionalities, as determined by the nanostructures,” Kuznetsov explained.
In this study, his team fabricated nano-scale antennas (nanoantennas) made of the semiconductor titanium dioxide and integrated them with liquid crystals to form a hybrid metasurface. They then applied a voltage to the liquid crystals, which in turn alters the resonance range of the nanoantennas to allow fine-tuning of the properties of the resultant light beam.
“Importantly, only a very thin layer of the liquid crystal—less than one micron—around the nanoantenna is required to perform this tuning. This is very different from conventional liquid crystal-only spatial light modulators (SLMs) where the liquid crystal layer is much thicker, typically five microns,” said Kuznetsov.
By miniaturizing the system components into the nanometer range, the researchers also demonstrated, for the first time, light modulation by a metasurface at the level of individual pixels. The efficiency of light modulation in their 28 pixel-device exceeded 30 percent, superior to prior demonstrations which performed in the efficiency range of just 1-2 percent.
“We were also able to achieve a beam-steering angle of 22 degrees using our pixels of approximately one-micron width, compared to only 0.8 degrees allowed by currently existing transmissive SLMs,” Kuznetsov added. This improvement in the steering angle can already be applied to technologies such as LIDAR in autonomous vehicles, the researchers said.
Going forward, Kuznetsov’s team plans to use the high beam-steering angle of their metasurface in two-dimensional pixels for producing holographic images.
Suggested Items
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.
ICEFlight to Accelerate Maturation of Cryogenic Technologies for Hydrogen-Powered Flight
05/27/2025 | GKN AerospaceGKN Aerospace is one of the project partners in ICEFlight (Innovative Cryogenic Electric Flight), a project aiming to contribute to the development of hydrogen-powered flight.
Vertical Aerospace Makes Aviation History with Piloted eVTOL Flight in Open Airspace
05/27/2025 | BUSINESS WIREVertical Aerospace, a global aerospace and technology company that is pioneering electric aviation, announced it has made European aviation history with the first-ever piloted wingborne flight of a winged electric vertical take-off and landing (eVTOL) aircraft in open airspace.
Dymax to Showcase Light-Cure Solutions at The European Battery Show 2025
05/23/2025 | Dymax CorporationDymax, a global manufacturer of rapid light-curing materials and equipment, will exhibit at The European Battery Show 2025 in Stand 4-C60
Northrop Grumman Navigation Technology Completes Hypersonic Test Flights
05/14/2025 | Northrop GrummanNorthrop Grumman Corporation successfully completed two test flights of its Advanced Hypersonic Technology Inertial Measurement Unit at hypersonic speed, leveraging Stratolaunch’s reusable hypersonic airplane, Talon-A.