NUS Innovation Boosts Wireless Connectivity 1,000 Times
July 17, 2019 | NUSEstimated reading time: 4 minutes
The team has a first-year provisional patent on the metamaterial textile design, which consists of a comb-shaped strip of metamaterial on top of the clothing with an unpatterned conductor layer underneath. These strips can then be arranged on clothing in any pattern necessary to connect all areas of the body. The metamaterial itself is cost-effective, in the range of a few dollars per metre, and can be bought readily in rolls.
“We started with a specific metamaterial that was both flat and could support surface waves. We had to redesign the structure so that it could work at the frequencies used for Bluetooth and Wi-Fi, perform well even when close to the human body, and could be mass produced by cutting sheets of conductive textile,” Asst Prof Ho explained.
The team’s particular design was created with the aid of a computer model to ensure successful communication in the radio frequency range and to optimise overall efficacy. The smart clothing is then fabricated by laser-cutting the conductive metamaterial and attaching the strips with fabric adhesive.
Once made, the ‘smart’ clothes are highly robust. They can be folded and bent with minimal loss to the signal strength, and the conductive strips can even be cut or torn, without inhibiting the wireless capabilities. The garments can also be washed, dried, and ironed just like normal clothing.
Next Steps
The team is talking to potential partners to commercialise this technology, and in the near future Asst Prof Ho is hoping to test the ‘smart’ textiles as specialised athletic clothing and for hospital patients to monitor performances and health. Potential applications could range dramatically — from measuring a patient’s vital signs without inhibiting their freedom of motion, to adjusting the volume in an athlete’s wireless headphones with a single hand motion.
“We envision that endowing athletic wear, medical clothing and other apparel with such advanced electromagnetic capabilities can enhance our ability to perceive and interact with the world around us,” Asst Prof Ho said.
Suggested Items
China Smartphone Market Grew 3.3% in 1Q25, Outperforming Global Growth Ahead of US-China Trade Tensions
04/17/2025 | IDCAccording to preliminary data from the International Data Corporation (IDC) Worldwide Quarterly Mobile Phone Tracker, China's smartphone market shipped 71.6 million units in 1Q25, a 3.3% year-on-year (YoY) increase.
IPC APEX EXPO 2025 Learning Lounge: Education on the Show Floor
04/16/2025 | Andy Shaughnessy, Design007The conference portion of IPC APEX EXPO has been providing educational opportunities for attendees since the first show. But recently, show managers decided to expand education onto the show floor.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Smart and Compact Sensors with Edge-AI
04/16/2025 | FraunhoferA newly launched interdisciplinary research project involving universities of Brandenburg and research institutions is developing new technological approaches for better and more effective integration of artificial intelligence at the edges of IT networks, so-called “edges”.
Nortech Expands Fiber Optic Capabilities to Include MT Connectors, Strengthening Aerospace and Defense Solutions
04/16/2025 | BUSINESS WIRENortech Systems, a trusted leader in innovative connectivity solutions, announced an exciting expansion in its fiber optic capabilities with the integration of MT connectors. MT connectors, known for their ability to support multiple fiber terminations in a compact form factor, are an ideal choice for applications requiring robust data transmission and reliability.