A Graphene Superconductor That Plays More Than One Tune
July 18, 2019 | Berkeley LabEstimated reading time: 5 minutes

What’s thinner than a human hair but has a depth of special traits? A multitasking graphene device developed by researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). The superthin material easily switches from a superconductor that conducts electricity without losing any energy, to an insulator that resists the flow of electric current, and back again to a superconductor—all with a simple flip of a switch. Their findings were reported today in the journal Nature.
“Usually, when someone wants to study how electrons interact with each other in a superconducting quantum phase versus an insulating phase, they would need to look at different materials. With our system, you can study both the superconductivity phase and the insulating phase in one place,” said Guorui Chen, the study’s lead author and a postdoctoral researcher in the lab of Feng Wang, who led the study. Wang, a faculty scientist in Berkeley Lab’s Materials Sciences Division, is also a UC Berkeley physics professor.
Schematic of graphene/boron nitride moire’ superlattice superconductor/insulator device: The heterostructure material is composed of three atomically thin (2D) layers of graphene (gray) sandwiched between 2D layers of boron nitride (red and blue) to form a repeating pattern called a moiré superlattice. Superconductivity is indicated by the light-green circles, which represent the hole (positive charge) sitting on each unit cell of the moiré superlattice. (Credit: Guorui Chen/Berkeley Lab)
The graphene device is composed of three atomically thin (2D) layers of graphene sandwiched between 2D layers of boron nitride to form a repeating pattern called a moiré superlattice. The material could help other scientists understand the complicated mechanics behind a phenomenon known as high-temperature superconductivity, where a material can conduct electricity without resistance at temperatures higher than expected, though still hundreds of degrees below freezing.
In a previous study, the researchers reported observing the properties of a Mott insulator in a device made of trilayer graphene. A Mott insulator is a class of material that somehow stops conducting electricity at hundreds of degrees below freezing despite classical theory predicting electrical conductivity. But it has long been believed that a Mott insulator can become superconductive by adding more electrons or positive charges to make it superconductive, Chen explained.
For the past 10 years, scientists have been studying ways to combine different 2D materials, often starting with graphene – a material known for its ability to efficiently conduct heat and electricity. Out of this body of work, it was discovered that moiré superlattices formed with graphene exhibit exotic physics such as superconductivity when the layers are aligned at just the right angle.
“So for this study we asked ourselves, ‘If our trilayer graphene system is a Mott insulator, could it also be a superconductor?’” said Chen.
Page 1 of 2
Suggested Items
CE3S Launches EcoClaim Solutions to Simplify Recycling and Promote Sustainable Manufacturing
05/29/2025 | CE3SCumberland Electronics Strategic Supply Solutions (CE3S), your strategic sourcing, professional solutions and distribution partner, is proud to announce the official launch of EcoClaim™ Solutions, a comprehensive recycling program designed to make responsible disposal of materials easier, more efficient, and more accessible for manufacturers.
American Made Advocacy: Lobbying Congress Supports the Supply Chain
05/27/2025 | Shane Whiteside -- Column: American Made AdvocacyThe upheaval in world markets is driving daily headlines. The global supply chain has seemed “normal” for the microelectronics industry because over the past three decades, an increasing percentage of microelectronics components and materials have been made overseas. For many years, other countries, primarily in Asia, invested heavily in their microelectronics industry while U.S. companies offshored manufacturing services in pursuit of the lowest cost.
Dymax to Showcase Light-Cure Solutions at The European Battery Show 2025
05/23/2025 | Dymax CorporationDymax, a global manufacturer of rapid light-curing materials and equipment, will exhibit at The European Battery Show 2025 in Stand 4-C60
Pioneering Energy-Efficient AI with Innovative Ferroelectric Technology
05/22/2025 | FraunhoferAs artificial intelligence (AI) becomes increasingly integrated into sectors such as healthcare, autonomous vehicles and smart cities, traditional computing architectures face significant limitations in processing speed and energy efficiency
Self-Healing Materials Could Unlock the Potential of Tomorrow’s Technology, Reports IDTechEx
05/22/2025 | IDTechExA sci-fi movie trope is the virtually indestructible robot, capable of operating without rest due to extended battery life, able to interact with its surroundings like a human thanks to advanced soft robotic components, and fully autonomous due to an extensive suite of sensors.