Better Thermal Conductivity by Adjusting the Arrangement of Atoms
July 19, 2019 | University of BaselEstimated reading time: 2 minutes
Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone.
In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is therefore important to closely examine the heat carrier waves, known as phonons, and to understand their behavior in materials.
Research is now even going one step further and is specifically designing materials that can be used to control the propagation of phonons. One aim is to produce materials that release heat very quickly and thus heat up as little as possible. Another is to maintain temperature differences for as long as possible in order to use them for power generation.
Improved Propagation Using Rotation
Headed by Professor Ilaria Zardo, the group from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute examined materials that have tailored properties for the transmission and dispersion of phonons. As part of an international collaboration led by Zardo, the nanoscientists were able to show for the first time that the arrangement of the atoms alone influences the phonons and thus the thermal conductivity.
To this end, the researchers produced gallium phosphide nanowires in which successive crystal layers are periodically rotated against each other by 60 degrees. This arrangement forms a superstructure in which phonons propagate coherently – thus conducting the heat very effectively.
Interfaces Without Defects
Previously, such superstructures were produced from periodically arranged layers of different materials. However, the interfaces between different materials are often not perfectly defined, and defects occur that massively reduce the propagation of phonons and thus the thermal conductivity.
In their recent investigations, the researchers proved that such interference effects do not occur if the material of the layers is identical but the arrangement of the atoms differs. And although the layers consist of the same material, the phononic properties only change through the rotation of the layers against each other. Until now it was not clear whether these novel systems behave like conventional superlattices.
The study is a collaboration between the Department of Physics at the University of Basel, the Swiss Nanoscience Institute (SNI), the Eindhoven University of Technology, the Autonomous University of Barcelona and the Institut de Ciència de Materials de Barcelona.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).