Physicists Find First Possible 3D Quantum Spin Liquid
July 23, 2019 | Rice UniversityEstimated reading time: 5 minutes

There’s no known way to prove a three-dimensional “quantum spin liquid” exists, so Rice University physicists and their collaborators did the next best thing: They showed their single crystals of cerium zirconium pyrochlore had the right stuff to qualify as the first possible 3D version of the long-sought state of matter.
Despite the name, a quantum spin liquid is a solid material in which the weird property of quantum mechanics—entanglement—ensures a liquidlike magnetic state.
In a paper this week in Nature Physics, researchers offered a host of experimental evidence—including crucial neutron-scattering experiments at Oak Ridge National Laboratory (ORNL) and muon spin relaxation experiments at Switzerland’s Paul Scherrer Institute (PSI)—to support their case that cerium zirconium pyrochlore, in its single-crystal form, is the first material that qualifies as a 3D quantum spin liquid.
“A quantum spin liquid is something that scientists define based on what you don’t see,” said Rice’s Pengcheng Dai, corresponding author of the study and a member of Rice’s Center for Quantum Materials (RCQM). “You don’t see long-range order in the arrangement of spins. You don’t see disorder. And various other things. It’s not this. It’s not that. There’s no conclusive positive identification.”
The research team’s samples are believed to be the first of their kind: Pyrochlores because of their 2-to-2-to-7 ratio of cerium, zirconium and oxygen, and single crystals because the atoms inside them are arranged in a continuous, unbroken lattice.
“We’ve done every experiment that we could think of on this compound,” Dai said. “(Study co-author) Emilia Morosan‘s group at Rice did heat capacity work to show that the material undergoes no phase transition down to 50 millikelvin. We did very careful crystallography to show there is no disorder in the crystal. We did muon spin relaxation experiments that demonstrated an absence of long-range magnetic order down to 20 millikelvin, and we did diffraction experiments that showed the sample has no oxygen vacancy or other known defects. Finally, we did inelastic neutron scattering that showed the presence of a spin-excitation continuum — which may be a quantum spin liquid hallmark — down to 35 millikelvin.”
Dai, a professor of physics and astronomy, credited the success of the study to his colleagues, notably co-lead authors Bin Gao and Tong Chen and co-author David Tam. Gao, a Rice postdoctoral research associate, created the single-crystal samples in a laser floating zone furnace at the lab of Rutgers University co-author Sang-Wook Cheong. Tong, a Rice Ph.D. student, helped Bin perform experiments at ORNL that produced a spin excitation continuum indicative of the presence of spin entanglement that produces short-range order, and Tam, also a Rice Ph.D. student, led muon spin rotation experiments at PSI.
Despite the team’s effort, Dai said it is impossible to definitively say cerium-zirconium 227 is a spin liquid, partly because physicists haven’t yet agreed on what experimental proof is necessary to make the declaration, and partly because the definition of a quantum spin liquid is a state that exists at absolute zero temperature, an ideal beyond the reach of any experiment.
Quantum spin liquids are believed to occur in solid materials that are composed of magnetic atoms in particular crystalline arrangements. The inherent property of electrons that leads to magnetism is spin, and electron spins can only point up or down. In most materials, spins are shuffled at random like a deck of cards, but magnetic materials are different. In the magnets on refrigerators and inside MRI machines, spins sense their neighbors and arrange themselves collectively in one direction. Physicists call this “long-range ferromagnetic order,” and another important example of long-range magnetic order is antiferromagnetism, where spins collectively arrange in a repeating, up-down, up-down pattern.
Page 1 of 2
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.