KIST-Stanford Team Develops New Material for Wearable Devices Able to Restore Conductivity
July 24, 2019 | National Research Council of Science & TechnologyEstimated reading time: 2 minutes
The research team of researcher Hyunseon Seo and senior researcher Dr. Donghee Son of the Korea Institute of Science and Technology's (KIST, president: Byung-gwon Lee) Biomedical Research Institute and postdoctoral candidate Dr. Jiheong Kang and Professor Zhenan Bao of Stanford University (chemical engineering) announced a new material, developed via joint convergence research, that simultaneously possesses high stretchability, high electrical conductivity, and self-healability even after being subjected to severe mechanical strain.
Image Caption: Contrary to typical materials, the electrical conductivity of which decreases when the shape of the materials is changed by an applied tensile strain, the new material developed by the KIST research team shows a dramatic increase in conductivity under a tensile strain of 3,500%.
Currently, interest in the development of wearable electronic devices is growing rapidly. Prior to this study, Dr. Donghee Son, Dr. Jiheong Kang, and Prof. Zhenan Bao developed a polymer material that is highly elastic, can self-heal without the help of external stimuli even when exposed to water or sweat, and has a mechanical strength similar to that of human skin, making it comfortable to wear for long periods of time. (Advanced Materials 30, 1706846, 2018)
In its most recent study, the KIST-Stanford research team developed a new material that can be utilized as an interconnect, because it has the same properties as existing wearable materials as well as high levels of electrical conductivity and stretchability, which allow the stable transmission of electricity and data from the human body to electronic devices.
The KIST-Stanford team dispersed silver micro-/nano-particles throughout the highly stretchable and self-healable polymer material to achieve a new design for a nanocomposite material with high stretchability and high electrical conductivity.
During tests, the material developed by the KIST team was utilized as an interconnect and attached to the human body to allow for the measurement of biometric signals in real time. The signals were then transmitted to a robotic arm, which successfully and accurately imitated (in real time) the movements of a human arm.
Contrary to typical materials, the electrical conductivity (and thus performance) of which decreases when the shape of the materials is changed by an applied tensile strain, the new material developed by the KIST research team shows a dramatic increase in conductivity under a tensile strain of 3,500 percent. In fact, electrical conductivity rose over 60-fold, achieving the highest conductivity level reported worldwide so far. Even if the material is damaged or completely cut through, it is able to self-heal, a property that is already gaining attention from academia.
The KIST team investigated phenomena that have not yet been studied in existing conductive materials. The phenomenon exhibited in the new material developed by the team is electrical "self-boosting," which refers to the self-improvement of electrical conductivity through the rearrangement and self-alignment of a material's micro-/nano-particles when the material is stretched. The team also discovered the mechanism of such dynamic behavior of micro-/nano-particles by using SEM and microcomputed tomography (μ-CT) analyses.
Seo said, "Our material is able to function normally even after being subjected to extreme external forces that cause physical damages, and we believe that it will be actively utilized in the development and commercialization of next-generation wearable electronic devices," while Son stated, "Because the outcome of this study is essentially the foundational technology necessary for the development of materials that can be used in major areas of the Fourth Industrial Revolution, such as medical engineering, electrical engineering, and robotics, we expect that it will be applicable to diverse fields."
Suggested Items
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.
Ventec Strengthens Commitment to Halogen-Free PCB Manufacturing in Europe
06/11/2025 | Ventec International GroupVentec International Group, the PCB materials innovator, manufacturer, supplier and one-stop shop for copper clad laminates, prepregs, as well as process consumables and PCB manufacturing equipment has established volume inventory of halogen-free FR4.1 and FR15.1 PCB materials at its European hub in Germany.