3D Printable 2D Materials-based Inks Show Promise to Improve Energy Storage Devices
July 31, 2019 | University of ManchesterEstimated reading time: 2 minutes

For the first time, a team of researchers, from the School of Materials and the National Graphene Institute at The the University of Manchester have formulated inks using the 2D material MXene, to produce 3D printed interdigitated electrodes.
MXene, a ‘clay-like’ two-dimensional material composed of early transition metals (such as titanium) and carbon atoms, was first developed by Drexel University. However, unlike most clays, MXene shows high electrical conductivity upon drying and is hydrophilic, allowing them to be easily dispersed in aqueous suspensions and inks.Since its isolation, graphene has opened the doors for the exploration of other two-dimensional materials, each with a range of different properties. However, in order to make use of these unique properties, 2D materials need to be efficiently integrated into devices and structures. The manufacturing approach and materials formulations are essential to realise this.
Dr Suelen Barg who led the team said: “We demonstrate that large MXene flakes spanning a few atoms thick, and water can be independently used to formulate inks with very specific viscoelastic behaviour for printing. These inks can be directly 3D printed into freestanding architectures over 20 layers tall. Due to the excellent electrical conductivity of MXene, we can employ our inks to directly 3D print current collector-free supercapacitors. The unique rheological properties combined with the sustainability of the approach open many opportunities to explore, especially in energy storage and applications requiring the functional properties of 2D MXene in customized 3D architectures.”
Wenji and Jae, PhD students at the Nano3D Lab at the University, said: “Additive manufacturing offers one possible method of building customised, multi-materials energy devices, demonstrating the capability to capture MXene’s potential for usage in energy applications. We hope this research will open avenues to fully unlock the potential of MXene for use in this field.”
The performance and application of these devices increasingly rely on the development and scalable manufacturing of innovative materials in order to enhance their performance.
Supercapacitors are devices that are able to produce massive amounts of power while using much less energy than conventional devices. There has been much work carried out on the use of 2D materials in these types of devices due to their excellent conductivity as well as having the potential to reduce the weight of the device.
Potential uses for these devices are for the automotive industry, such as in electric cars as well as for mobile phones and other electronics.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.