WPI Liquid Biopsy Chip Snares Circulating Tumor Cells in Blood Drops from Cancer Patients
July 31, 2019 | Worcester Polytechnic InstituteEstimated reading time: 7 minutes
The tests also showed that the carbon nanotube chip can capture cells regardless of their size and can also capture clusters of CTCs in addition to individual cells. (CTC clusters are rare, but they appear to have a greater ability to seed new tumors than individual CTCs.) Because the cells settle gently onto the nanotubes and latch on with tendrils that extend from the cell body, they are not damaged.
And while captured cells must be removed from other devices for analysis, which can be difficult with devices that use narrow microfluidic channels and often results in damage to the cells, the cells captured by the carbon nanotube chip remain viable and can even be cultured. In addition, because the chips are transparent, it is possible to stain and study captured cells without removing them.
The chip described in the Lab on a Chip paper is the latest generation of a liquid biopsy chip that has been under development for several years in Panchapakesan's Small Systems Laboratory at WPI in collaboration with the University of Massachusetts Medical School and the University of Louisville.
The chips are made with materials and batch fabrication techniques similar to those used to make semiconductors. The current generation is a 76-element array of test wells on a glass and silicon wafer. In addition to making mass production possible, the multi-well design makes it easy to split a blood sample among multiple wells. The small volume of blood placed in each well makes it possible to more accurately count the attached CTCs.
Panchapakesan said he believes the latest generation of carbon nanotube liquid biopsy chip is ready for clinical trials. Toward that end, he is working with StrandSmart Inc., a Silicon-Valley start-up led by CEO Adrianna Davies. The team envisions testing a point of care (POC) device to detect cancer in the earliest stages globally.
"This potentially life-saving technology could have multiple beneficial applications," Panchapakesan said. "It could help shed light on the complex biological and genetic processes at play in cancer. It could detect cancers at a very early stage by capturing the cells that nascent tumors shed into the blood. It could identify CTCs with metastatic potential before new tumors even begins, and it could help shape treatments customized to each person's cancer."
The highly interdisciplinary team of researchers working on this technology consists of graduate students Masoud Loeian and Farzaneh Farhadi, and postdoctoral researcher Sadegh Mehdi Aghaei at WPI; Dr. Mark Johnson and Dr. Hong Wei Yang at UMass Medical School; and undergraduate student Veeresh Rai, along with Dr. Farrukh Aqil, Dr. Mounika Mandadi, and Dr. Shesh N. Rai at the JG Brown Cancer Center at the University of Louisville. Additionally, the tissue and biobank facility at UMass Medical School provided some of the patient samples for the study.
About Worcester Polytechnic Institute
WPI, a global leader in project-based learning, is a distinctive, top-tier technological university founded in 1865 on the principle that students learn most effectively by applying the theory learned in the classroom to the practice of solving real-world problems. Recognized by the National Academy of Engineering with the 2016 Bernard M. Gordon Prize for Innovation in Engineering and Technology Education, WPI's pioneering project-based curriculum engages undergraduates in solving important scientific, technological, and societal problems throughout their education and at more than 50 project centers around the world. WPI offers more than 50 bachelor's, master's, and doctoral degree programs across 14 academic departments in science, engineering, technology, business, the social sciences, and the humanities and arts. Its faculty and students pursue groundbreaking research to meet ongoing challenges in health and biotechnology; robotics and the internet of things; advanced materials and manufacturing; cyber, data, and security systems; learning science; and more.
Page 2 of 2Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.