Researchers Demonstrate Low Voltage LEDs
August 1, 2019 | University of ManchesterEstimated reading time: 2 minutes

When atomically thin semiconductors are combined together in a Lego style, they emit light at a lower voltage potentially leading to low energy consumption devices.
Whilst this research is in its fundamental state this shows promise for practical applications in optoelectronics and telecommunications.
The voltage of an LED is usually equal to or larger than the bandgap energy per electron charge. A team of researchers based at The University of Manchester, University of Warsaw, the High Magnetic Field Laboratory in Grenoble and the National Institute for Materials Science in Japan have been able to demonstrate LEDs that turn on at much lower voltages.
The idea to stack layers of different materials to make so-called heterostructures goes back to the 1960s, when semiconductor gallium arsenide was researched for making miniature lasers—which are now widely used.
Today, heterostructures are common and are used very broadly in semiconductor industry as a tool to design and control electronic and optical properties in devices.
More recently in the era of atomically thin two-dimensional (2D) crystals, such as graphene, new types of heterostructures have emerged, where atomically thin layers are held together by relatively weak van der Waals forces.
The new structures nicknamed ‘van der Waals heterostructures’ open a huge potential to create numerous designer-materials and novel devices by stacking together any number of atomically thin layers. Hundreds of combinations become possible otherwise inaccessible in traditional three-dimensional materials, potentially giving access to new unexplored optoelectronic device functionality or unusual material properties.
There are a lot of experiments done by various research groups in the world, which focus on light emitting properties of transition metal dichalcogenides. However, often these studies are done purely by optical means. For practical applications, electrically triggered light emission is more desirable.
As published in Nature Communications, the team led by Dr Aleksey Kozikov, Professor Kostya Novoselov and Prof. Marek Potemski were able to do this using electricity. They bound electrons and holes sitting in different transition metal dichalcogenides, so-called interlayer excitons. The researchers created experimental conditions when these excitons recombine non-radiatively, Auger effect. The released energy is transferred to other carriers that can then move to higher energy states. As a result, charge carriers whose energy was originally too low to overcome the material’s bandgap can now easily cross this potential barrier, recombine and emit light. This effect is called upconversion.
Graphene electrodes are used to electrically inject charge carriers through hexagonal boron nitride stacked in a heterostructure into Molybdenum disulphide (MoS2) and Tungsten diselenide (WSe2). Changing the distance between these transition metal dichalcogenides by adding boron nitride in between allows tuning the LEDs from a normal operation to a low-voltage operation and observing the effect of upconversion.
From the fundamental point of view the observed effects mark an important step towards the realisation of exciton condensation and superfluidity of van der Waals heterostructures.
Dr. Johannes Binder, the first author of the paper, from the University of Warsaw said: “When we started measuring the first MoS2/WSe2 devices we were really surprised to observe emission at such low applied voltages. This upconverted emission impressively shows the importance of Auger processes for interlayer excitons in van der Waals heterostructures. Our findings shed more light on the physics in the largely unexplored high carrier density regime, which is crucial for optoelectronic applications as well as for fundamental phenomena like interlayer exciton condensation.”
Dr. Aleksey Kozikov added: “It is fascinating how adding just one atomically thin material can change properties of a device so dramatically. This is the power of van der Waals heterostructures in action”.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.