DARPA Making Progress on Miniaturized Atomic Clocks for Future PNT Applications
August 22, 2019 | DARPAEstimated reading time: 5 minutes
Honeywell’s integrated photonic chip technology not only reduces the size, weight, and power of laser delivery systems, but also allows for batch fabrication of complex optical systems with reduced manufacturing cost.
Figure 2: Silicon chip with waveguides and gratings to create a 3D laser beam pattern. In the photo, the light-guiding channels glow from the light they are directing, and the invisible 3D beams coming out of the chip are indicated by a computer-rendered overlay. Source: Honeywell
Finally, a team from NASA’s Jet Propulsion Laboratory (JPL), with support from researchers at SRI International; University of California, Davis; and University of Illinois Urbana-Champaign, has demonstrated an experimental atomic clock capable of meeting ACES’ target metrics, while proving immune to temperature and environmental issues. Building off research that created the Deep Space Atomic Clock (DSAC), the team developed an ion-based approach to atom cooling that relies on ionized mercury and ultraviolet lamps instead of lasers. The JPL atomic clock showed an immunity of less than 1 part in 14 decimal places for 1 degree Celsius change. To put that in perspective, that is about 100x better than current CSACs. The use of mercury ions also provides more stability while making the technology less sensitive to magnetic fields and temperature changes.
Figure 3: This photo is of the ACES 10 cc package developed by researchers from NASA’s JPL. Source: NASA Jet Propulsion Laboratory
As evidenced by the NIST and Honeywell research, progress on the ACES program is generating new means of fabricating atomic clock technologies at wafer scale, which makes continued exploration more cost effective and less reliant on massive engineering endeavors. “Today, we are dealing with complicated optical systems that require massive amounts of engineering whenever you want to iterate on a design. The early progress made on ACES shows that there are viable options in development for doing this same thing without the massive engineering manpower or hefty costs associated with current approaches,” noted Burke.
Page 2 of 2Suggested Items
Robotics Action Plan for Europe: VDMA Urges Policymakers to Boost Competitiveness
02/20/2025 | VDMAVDMA Robotics +Automation, the largest networking organization for the robotics industry in Europe, has issued a call to action to stop the loss of global competitiveness of European economies.
STMicroelectronics to Enable Higher-Performance Cloud Optical Interconnect in Datacenters and AI Clusters
02/20/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications, is unveiling its next generation of proprietary technologies for higher-performing optical interconnect in datacenters and AI clusters.
Are Domestic Assemblers Ready for the Next Level of Electronics Miniaturization?
02/19/2025 | Chrys Shea, SHEA Engineering ServicesUHDI technology is more than another evolutionary level of miniaturization. It’s a fundamental change in how we create circuit boards, on a scale potentially as impactful as the transition from through-hole to surface mount was 40 years ago.
Cambridge GaN Devices Secures $32M to Drive Global Growth in Power Semiconductor Industry
02/18/2025 | BUSINESS WIRECambridge GaN Devices (CGD), a leading innovator in gallium nitride (GaN) power devices, has successfully closed a $32 million Series C funding round. The investment was led by a strategic investor with participation from British Patient Capital and supported by existing investors Parkwalk, BGF, Cambridge Innovation Capital (CIC), Foresight Group, and IQ Capital.
Electra Polymers Ltd Becomes Primary Inkjet Soldermask Supplier for TLT PCB, an Affiliated Teltonika Company
02/18/2025 | Electra Polymers LtdElectra Polymers Ltd, a global leader in inkjet materials for the PCB industry, is proud to announce a new partnership with high-tech design and manufacturing company TLT PCB, an affiliated company of Teltonika, becoming the primary supplier of inkjet soldermask for TLT PCB’s new manufacturing facility in Vilnius, Lithuania.