Researchers Realize World’s Thinnest Optical Hologram with 2-D Material Monolayer
August 22, 2019 | Missouri S&TEstimated reading time: 2 minutes

Missouri S&T researchers are demonstrating a new concept to reconstruct holographic images by using a single two-dimensional material monolayer with the thickness of less than one nanometer. Their work could lead to the creation of smart watches with holographic displays, printed security cryptograms on bank notes and credit cards, and new possibilities for data storage.
The researchers describe their atomically thin nonlinear optical holograms in Nano Letters, one of the top journals in nanotechnology research, and prototype their device by reconstructing several kinds of holographic images with tungsten disulfide monolayers of the thickness of around 0.7 nanometer. A nanometer is one billionth of a meter, and a tungsten disulfide monolayer only contains one layer of tungsten atoms sandwiched between two layers of sulfur atoms.
The approach is described in the Nano Letters paper “Atomically thin nonlinear transition metal dichalcogenide holograms,” which was published online Friday, Aug. 16. It involves the use of only a single nanopatterned tungsten disulfide monolayer that is able to control the wavefront of light, where the designed hologram patterns are punctured by a nanofabrication process known as focused ion beam milling.
Experimenting with the ultrafast laser excitation on the nanopatterned tungsten disulfide monolayer, the researchers demonstrated a nonlinear optical hologram with high conversion efficiency and atomic thickness, for producing optical vortex beams and Airy beams as well as reconstructing complex holographic images at the second harmonic frequency. An Airy beam is a waveform that appears to curve as it moves.
In their paper, the Missouri S&T researchers published reconstructed holographic images of the Chinese character for the word “light” with blue and green colors. They believe this new type of optical hologram holds promise for future applications, such as security markings on banknotes and credit cards, optical communications, smart watch displays, and data storage.
“We are able to control the binary amplitude modulation of zero and one by simply etching out or keeping the tungsten disulfide monolayer area,” says Dr. Xiaodong Yang, an associate professor in mechanical and aerospace engineering at Missouri S&T. “Our holograms possess significantly higher nonlinear conversion efficiency than the currently existing plasmonic metasurface holograms made of metallic nanostructures.”
“In addition, our holograms have atomic thickness of less than one nanometer, much thinner than the usual thickness of tens of nanometers for plasmonic metasurfaces and several hundred nanometers for dielectric metasurfaces,” says Dr. Jie Gao, an associate professor of mechanical and aerospace engineering at Missouri S&T and co-author of the paper.
Suggested Items
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
Kitron: Q1 2025 - Strong Start to the Year
04/25/2025 | KitronKitron reported first-quarter results characterised by continued momentum in the Defence & Aerospace market sector and a growing order backlog.
RTX's Collins Aerospace Enhances Capabilities to Speed Marine Corps Decision-making in Battle
04/22/2025 | RTXCollins Aerospace, an RTX business, successfully demonstrated new technology that helps the military gather and use information from a wider range of sources at Project Convergence Capstone 5, a large-scale military exercise.
AdvancedPCB Appoints Gary Stoffer as Chief Commercial Officer
04/18/2025 | PRNewswireAdvancedPCB is proud to announce the appointment of Gary Stoffer as its new Chief Commercial Officer (CCO). In this role, Stoffer will lead all sales, marketing, and commercial strategy initiatives as the company continues its mission to deliver cutting-edge PCB solutions to industries worldwide.
Real Time with... IPC APEX EXPO 2025: GreenSource's Growth and Future Developments
04/15/2025 | Real Time with...IPC APEX EXPOThings are looking bright for GreenSource. Michael Gleason shares an update on GreenSource's recent growth and upcoming changes. A recipient of a Defense Production Act Investment Program award, GreenSource is planning for new substrate capabilities. Current investments continue to enhance equipment and sustainability initiatives such as water quality. And their unique collaboration with the University of New Hampshire continues to aid their workforce development, despite recruitment challenges.