Gallium Oxide Power Transistors with Record Values
August 27, 2019 | Forschungsverbund Berlin e. V.Estimated reading time: 1 minute

The Ferdinand-Braun-Institut (FBH) has now achieved a breakthrough with transistors based on gallium oxide (ß-Ga2O3).
The newly developed ß-Ga2O3-MOSFETs (metal-oxide-semiconductor field-effect transistor) provide a high breakdown voltage combined with high current conductivity. With a breakdown voltage of 1.8 kilovolts and a record power figure of merit of 155 megawatts per square centimeter, they achieve unique performance figures close to the theoretical material limit of gallium oxide. At the same time, the breakdown field strengths achieved are significantly higher than those of established wide bandgap semiconductors such as silicon carbide or gallium nitride.
On a footprint as small as possible, these MOSFETs should offer low energy consumption and achieve ever higher power densities, thus working more efficiently. This is where conventional devices reach their limits. Scientists all over the world are therefore investigating new materials and components that can meet these requirements.
Optimized Layer Structure and Gate Topology
In order to achieve these improvements, the FBH team tackled the layer structure and gate topology. The basis was provided by substrates from the Leibniz Institute for Crystal Growth with an optimized epitaxial layer structure. As a result, the defect density could be reduced and electrical properties improved. This leads to lower on-state resistances. The gate is the central ‘switching point’ of field effect transistors, controlled by the gate-source voltage. Its topology has been further optimized, allowing to reduce high field strengths at the gate edge. This in turn leads to higher breakdown voltages.
Suggested Items
Just Because You Can, Doesn’t Mean You Should
03/20/2025 | Tony Plemel, Flexible Circuit TechnologiesDecisions are usually made by gathering information and differing opinions, then making the best choice based upon that information. The same process is used when designing flexible circuits and rigid-flex circuits. For example, when designing a flex circuit or rigid-flex circuit, we consider some basic factors.
Beyond Design: Key SI Considerations for High-speed PCB Design
03/20/2025 | Barry Olney -- Column: Beyond DesignOver the past two decades, I've simulated numerous complex, high-speed designs for customers creating computer-based products. In addition, I've conducted signal integrity software training courses and led classes on high-speed design. In this month’s column, I will reflect on the key considerations for achieving a successful high-speed PCB design that performs reliably, and I’ll highlight some of the common signal integrity issues that I frequently encounter.
Managing Energy Flow with Proper Stackup Design
02/13/2025 | Andy Shaughnessy, Design007At Design Con 2025, I had the opportunity to speak with Dan Beeker, technical director at NXP Semiconductor, about his technical session, which focused on optimizing PCB layers to best direct signal and power supply energy between these layers. In this interview, Dan discusses the complexities of board stackup and the significance of understanding dielectric layers for effective signal transmission. Dan is something of a “fields evangelist,” spreading the word about the need for designers to focus on fields, not just circuit theory. Toward the end, Dan summed up much of the design segment: Designing something that didn't make it break is not the same thing as designing it correctly.
Multilayer PCB Market to Reach $116.1B by 2032 at 5.5% CAGR: Allied Market Research
02/12/2025 | Globe NewswireAccording to the report, the "multilayer printed circuit board market" was valued at $71 billion in 2023, and is estimated to reach $116.1 billion by 2032, growing at a CAGR of 5.5% from 2024 to 2032.
MBK Partners Consortium to Acquire FICT Limited
02/11/2025 | FICT LimitedMBK Partners , one of the largest independent private equity groups in Asia, is acquiring the outstanding shares of FICT Limited, a global leader in interconnection technology, which includes high-multilayer printed circuit boards and build-up substrates.