New Coating Developed by Stanford Researchers Brings Lithium Metal Battery Closer to Reality
August 28, 2019 | Stanford UniversityEstimated reading time: 2 minutes

Hope has been restored for the rechargeable lithium metal battery – a potential battery powerhouse relegated for decades to the laboratory by its short life expectancy and occasional fiery demise while its rechargeable sibling, the lithium-ion battery, now rakes in more than $30 billion a year.
In laboratory tests, the coating significantly extended the battery’s life. It also dealt with the combustion issue by greatly limiting the tiny needlelike structures – or dendrites – that pierce the separator between the battery’s positive and negative sides. In addition to ruining the battery, dendrites can create a short circuit within the battery’s flammable liquid. Lithium-ion batteries occasionally have the same problem, but dendrites have been a non-starter for lithium metal rechargeable batteries to date.
“We’re addressing the holy grail of lithium metal batteries,” said Zhenan Bao, a professor of chemical engineering, who is senior author of the paper along with Yi Cui, professor of materials science and engineering and of photon science at SLAC. Bao added that dendrites had prevented lithium metal batteries from being used in what may be the next generation of electric vehicles.
The Promise
Lithium metal batteries can hold at least a third more power per pound as lithium-ion batteries do and are significantly lighter because they use lightweight lithium for the positively charged end rather than heavier graphite. If they were more reliable, these batteries could benefit portable electronics from notebook computers to cell phones, but the real pay dirt, Cui said, would be for cars. The biggest drag on electric vehicles is that their batteries spend about a fourth of their energy carrying themselves around. That gets to the heart of EV range and cost.
“The capacity of conventional lithium-ion batteries has been developed almost as far as it can go,” said Stanford PhD student David Mackanic, co-lead author of the study. “So, it’s crucial to develop new kinds of batteries to fulfill the aggressive energy density requirements of modern electronic devices.”
The team from Stanford and SLAC tested their coating on the positively charged end – called the anode – of a standard lithium metal battery, which is where dendrites typically form. Ultimately, they combined their specially coated anodes with other commercially available components to create a fully operational battery. After 160 cycles, their lithium metal cells still delivered 85% of the power that they did in their first cycle. Regular lithium metal cells deliver about 30% after that many cycles, rendering them nearly useless even if they don’t explode.
The new coating prevents dendrites from forming by creating a network of molecules that deliver charged lithium ions to the electrode uniformly. It prevents unwanted chemical reactions typical for these batteries and also reduces a chemical buildup on the anode, which quickly devastates the battery’s ability to deliver power.
“Our new coating design makes lithium metal batteries stable and promising for further development,” said the other co-lead author, Stanford PhD student Zhiao Yu.
The group is now refining their coating design to increase capacity retention and testing cells over more cycles.
“While use in electric vehicles may be the ultimate goal,” said Cui, “commercialization would likely start with consumer electronics to demonstrate the battery’s safety first.”
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.