One Giant Leap for Lunar Landing Navigation
September 19, 2019 | NASAEstimated reading time: 6 minutes
Getting there will be due in no small part to partnerships with commercial flight providers like Masten and others that enable test flights of SPLICE’s many technologies—essentially providing a series of dress rehearsals before their debut on the lunar surface. The Draper terrain relative navigation system will be ported directly into the SPLICE descent landing computer and eventually tested on Blue Origin’s New Shepard rocket.
“These types of commercial vehicles provide us a highly valuable way to test new guidance, navigation and control technologies and reduce their flight risk before being utilized in future missions,” said John M. Carson III, principal investigator for the SPLICE project at NASA’s Johnson Space Center in Houston.
According to Fritz and Carson, the benefits of commercial flight testing includes the ability to fly navigation sensors on different flight platforms at different altitudes. While Masten’s vehicle enables data collection for the descent and landing part of navigation, stratospheric balloon flights are helping the team tune the terrain relative navigation algorithm for higher altitudes when a spacecraft is approaching lunar orbit.
“By testing on different platforms and at different altitudes we’re able to get the full range of the algorithm’s capabilities,” explained Fritz. “This helps us identify where we’ll need to transition between satellite maps for different periods of the flight.”
Earlier this year, Flight Opportunities facilitated a test of the high-altitude part of Draper’s navigation algorithm on a balloon flight with World View Enterprises in Tucson, Arizona. The data from balloon flights combined with the research on Masten’s vehicle will be used to better calibrate the navigation algorithms.
“If we didn’t have these integrated field tests, a lot of new precision landing technologies might still be sitting in a lab or on paper, being deemed too risky for flight,” Carson said of the benefit of commercial flight tests. “This gives us the very necessary opportunity to get the data we need, make the necessary revisions, and build insight and confidence into how these technologies will perform on a spacecraft.”
Beyond test flights, SPLICE technologies are targeted for inclusion on upcoming flights to the Moon through NASA's Commercial Lunar Payload Services. Other terrain relative navigation technologies developed prior to SPLICE have also made their way onto mission manifests for Mars, including the Mars 2020 lander vision system.
Following Apollo 11, Armstrong would go on to note that the landing was in fact his biggest concern of the mission. “The unknowns were rampant,” he said. “There were just a thousand things to worry about.” New technologies promise to supply astronauts with even more precise information (and fewer concerns) to increase landing safety as they navigate to the lunar surface.
NASA’s Artemis lunar exploration program includes sending a suite of new science instruments and technology demonstrations to study the Moon, landing the first woman and next man on the lunar surface by 2024, and establishing a sustained presence by 2028. The agency will leverage its Artemis experience and technologies to prepare for the next giant leap – sending astronauts to Mars.
Page 2 of 2Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
IBM, RIKEN Unveil First IBM Quantum System Two Outside of the U.S.
06/24/2025 | IBMIBM and RIKEN, a national research laboratory in Japan, today unveiled the first IBM Quantum System Two ever to be deployed outside of the United States and beyond an IBM Quantum Data Center.
Excellon Installs COBRA Hybrid Laser at Innovative Circuits
06/23/2025 | ExcellonExcellon is pleased to announce the successful installation of a second COBRA Hybrid Laser System at Innovative Circuits, located in Alpharetta, Georgia. The Excellon COBRA Hybrid Laser System uniquely combines both UV and CO₂ (IR) laser sources on a single platform—making it ideal for high-density prototype and production printed circuit boards (PCBs).