Introducing 'Mesh,' Memory-Saving Plug-In to Boost Phone and Computer Performance
September 20, 2019 | University of Massachusetts at AmherstEstimated reading time: 2 minutes
Applications like web browsers or smartphone apps often use a lot of memory. To address this, a research group co-led by Emery Berger, a professor of computer science at the University of Massachusetts Amherst, has developed a system they call Mesh that can automatically reduce such memory demands. Berger is presenting this work today at Cppcon, the C++ conference in Aurora, Colorado.
Berger and colleagues in the College of Information and Computer Science (CICS) expect Mesh to have a substantial impact on the computing world, from mobile applications to desktops to data centers, because no one has previously been able to compact memory in applications written in or running on top of widely-used languages like C, C++, or Objective C, the language used for iOS apps.
As the authors explain, programs written in C-like languages can suffer from serious memory fragmentation, where memory is broken up, much like a bad Tetris board, Berger says, so there are many empty gaps in between. "This is how memory gets wasted," he points out. "Imagine a Tetris board where you could stop and reorganize it at any time - this would make the game a lot easier, because you could always squeeze out the empty space. But you can't do this in C, just as you can't do it in Tetris."
Mesh effectively squeezes out these gaps by taking advantage of a hardware feature called "virtual memory" that is supported by almost all modern computers. "The trick is to find chunks of memory that can be interleaved, sort of like when interlocking gears mesh," Berger explains. When Mesh finds these chunks, it can reclaim the memory from one of the chunks by combining the two chunks into just one. "This meshing process works because we only change things in 'physical' memory. From the perspective of the program, which can only see 'virtual' memory, nothing has changed. This is powerful because we can do this for any application automatically."
The team reports that the results to date have been extremely promising; for example, using Mesh automatically reduces the memory demands of the Firefox web browser by 16%. For Redis, a popular open source data structure server, Mesh reduces memory demands by almost 40%.
The CICS Mesh team includes professor Emery Berger, an expert in memory management who designed the algorithm that the Mac OS X memory manager is based on, professor Andrew McGregor, a specialist in algorithm design and analysis, and doctoral candidates Bobby Powers and David Tench. Powers is a fourth-year doctoral candidate who also is an infrastructure engineer at Stripe, and Tench is a fifth-year doctoral candidate specializing in randomized algorithms.
In a field where "catastrophic fragmentation" was long accepted as inevitable, their software is a major step forward, the authors point out. "This is something that everyone thought to be impossible," notes McGregor. "After Emery had his key insight, we were able to analyze it theoretically and design an efficient algorithm to implement the idea. Against almost 50 years of conventional wisdom, it's great that we now have a solution to this important problem that not only works in theory, but is practical."
Earlier this year, Berger presented technical details at the ACM SIGPLAN Programming Language Design and Implementation conference (PLDI '19) in Phoenix. In response to the paper, Microsoft programmer and distinguished engineer Miguel de Icaza tweeted that Mesh is a "truly inspiring work, with deep impact. A beautiful idea fully developed. What an amazing contribution to the industry."
Suggested Items
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Nortech Expands Fiber Optic Capabilities to Include MT Connectors, Strengthening Aerospace and Defense Solutions
04/16/2025 | BUSINESS WIRENortech Systems, a trusted leader in innovative connectivity solutions, announced an exciting expansion in its fiber optic capabilities with the integration of MT connectors. MT connectors, known for their ability to support multiple fiber terminations in a compact form factor, are an ideal choice for applications requiring robust data transmission and reliability.
QpiAI Announces Dawn of Quantum Era in India With 25 Qubit Quantum Computer
04/16/2025 | BUSINESS WIREQpiAI, a leader in quantum computing and generative AI, announced its First Quantum computer launch code named QpiAI Indus Quantum Computer.
Indium to Feature Materials Solutions Powering Sustainability at PCIM Europe
04/15/2025 | Indium CorporationIndium Corporation specializes in power device packaging, offering a portfolio of advanced material solutions encompassing the entire assembly, including die-attach, top-side die interconnect, substrate-attach, package-attach, and PCB assembly.
Global PCB Connections: The Next Wave of HDI PCBs– How Design Engineers Can Stay Ahead
04/17/2025 | Jerome Larez -- Column: Global PCB ConnectionsHigh density interconnect (HDI) printed circuit boards have come a long way from their origins as a niche technology for miniaturized applications. Today, HDI PCBs are at the forefront of innovation, driven by an insatiable demand for faster, smaller, and more powerful electronic devices. As consumer electronics, 5G infrastructure, and AI-driven systems advance, design engineers must stay ahead of the curve to ensure their PCB designs meet evolving industry demands.