How to Dismantle a Nuclear Bomb
September 30, 2019 | MITEstimated reading time: 6 minutes
How do weapons inspectors verify that a nuclear bomb has been dismantled? An unsettling answer is: They don’t, for the most part. When countries sign arms reduction pacts, they do not typically grant inspectors complete access to their nuclear technologies, for fear of giving away military secrets.
Instead, past U.S.-Russia arms reduction treaties have called for the destruction of the delivery systems for nuclear warheads, such as missiles and planes, but not the warheads themselves. To comply with the START treaty, for example, the U.S. cut the wings off B-52 bombers and left them in the Arizona desert, where Russia could visually confirm the airplanes’ dismemberment.
It’s a logical approach but not a perfect one. Stored nuclear warheads might not be deliverable in a war, but they could still be stolen, sold, or accidentally detonated, with disastrous consequences for human society.
“There’s a real need to preempt these kinds of dangerous scenarios and go after these stockpiles,” says Areg Danagoulian, an MIT nuclear scientist. “And that really means a verified dismantlement of the weapons themselves.”
Now MIT researchers led by Danagoulian have successfully tested a new high-tech method that could help inspectors verify the destruction of nuclear weapons. The method uses neutron beams to establish certain facts about the warheads in question — and, crucially, uses an isotopic filter that physically encrypts the information in the measured data.
A paper detailing the experiments, “A physically cryptographic warhead verification system using neutron induced nuclear resonances,” is being published today in Nature Communications. The authors are Danagoulian, who is the Norman C. Rasmussen Assistant Professor of Nuclear Science and Engineering at MIT, and graduate student Ezra Engel. Danagoulian is the corresponding author.
High-Stakes Testing
The experiment builds on previous theoretical work, by Danagoulian and other members of his research group, who last year published two papers detailing computer simulations of the system. The testing took place at the Gaerttner Linear Accelerator (LINAC) Facility on the campus of Rensselaer Polytechnic Institute, using a 15-meter long section of the facility’s neutron-beam line.
Nuclear warheads have a couple of characteristics that are central to the experiment. They tend to use particular isotopes of plutonium — varieties of the element that have different numbers of neutrons. And nuclear warheads have a distinctive spatial arrangement of materials.
The experiments consisted of sending a horizontal neutron beam first through a proxy of the warhead, then through a lithium filter scrambling the information. The beam’s signal was then sent to a glass detector, where a signature of the data, representing some of its key properties, was recorded. The MIT tests were performed using molybdenum and tungsten, two metals that share significant properties with plutonium and served as viable proxies for it.
The test works, first of all, because the neutron beam can identify the isotope in question.
“At the low energy range, the neutrons’ interactions are extremely isotope-specific,” Danagoulian says. “So you do a measurement where you have an isotopic tag, a signal which itself embeds information about the isotopes and the geometry. But you do an additional step which physically encrypts it.”
That physical encryption of the neutron beam information alters some of the exact details, but still allows scientists to record a distinct signature of the object and then use it to perform object-to-object comparisons. This alteration means a country can submit to the test without divulging all the details about how its weapons are engineered.
“This encrypting filter basically covers up the intrinsic properties of the actual classified object itself,” Danagoulian explains.
It would also be possible just to send the neutron beam through the warhead, record that information, and then encrypt it on a computer system. But the process of physical encryption is more secure, Danagoulian notes: “You could, in principle, do it with computers, but computers are unreliable. They can be hacked, while the laws of physics are immutable.”
The MIT tests also included checks to make sure that inspectors could not reverse-engineer the process and thus deduce the weapons information countries want to keep secret.
To conduct a weapons inspection, then, a host country would present a warhead to weapons inspectors, who could run the neutron-beam test on the materials. If it passes muster, they could run the test on every other warhead intended for destruction as well, and make sure that the data signatures from those additional bombs match the signature of the original warhead.
For this reason, a country could not, say, present one real nuclear warhead to be dismantled, but bamboozle inspectors with a series of identical-looking fake weapons. And while many additional protocols would have to be arranged to make the whole process function reliably, the new method plausibly balances both disclosure and secrecy for the parties involved.
Page 1 of 2
Suggested Items
Absolute EMS Earns ITAR Registration
10/31/2024 | Absolute EMS, Inc.Absolute EMS, Inc., a six-time award-winning provider of fast turnaround, turnkey contract electronic manufacturing services (EMS), proudly announces its ITAR (International Traffic in Arms Regulations) registration, reinforcing its commitment to serving military, aerospace and defense OEM customers.
Intersoft Electronics Establishes Services Branch in Asia Pacific
10/08/2024 | Intersoft Electronics GroupIntersoft Electronics Group announced the establishment of Intersoft Electronics Services APAC. This development perfectly aligns to the strategy of serving local markets and expanding the Intersoft Electronics Group’s global presence as a technology and services provider for civil and military CNS customers.
RENK, QinetiQ Announce Strategic Partnership in Advanced Mobility Technology
09/10/2024 | QinetiQQinetiQ and RENK Group AG, a leading supplier of military and civilian propulsion solutions have signed a strategic partnership agreement that will see the two companies jointly develop future mobility concepts for military land platforms in the weight class of 5 to 60 tons. The partnership will focus on advanced hybridisation concepts and uncrewed ground vehicles (UGVs).
Archer Delivers First Midnight Aircraft to The United States Air Force
08/16/2024 | BUSINESS WIREArcher Aviation Inc. announced it has delivered its first Midnight aircraft to the USAF to evaluate as part of its AFWERX Agility Prime contract valued at up to $142M..
MilDef to Deliver Rugged Displays to European Military Vehicle Manufacturer
08/14/2024 | CisionVia the acquisition of certain assets of Advanced Vision Technologies Ltd (AVT), MilDef has now been entrusted to deliver intelligent and rugged displays to key European land vehicle programmes.