Ultra-Sensitive Sensors from Impure Diamonds
September 30, 2019 | Kyoto UniversityEstimated reading time: 1 minute

A Kyoto University research group has developed the longest spin coherence times at room temperature of an NV centre in diamond, using an artificially synthesised phosphorus-doped n-type diamond.
Furthermore, they succeeded in recording the highest magnetic field sensitivity of a single NV quantum sensor. Their findings were reported in Nature Communications.
An NV centre in diamond emerges when a carbon atom in the lattice is replaced by a nitrogen atom, and one of its adjacent atoms is removed. This generates a 'hole' in the lattice, known as a 'vacancy', hence the name N (nitrogen) V (Vacancy) centre. This vacancy attracts an electron and takes the property of a magnet.
Owing to its stability and sensitivity, NV centres in diamond are a major focus for researchers who hope to apply the technology to develop ultrasensitive quantum sensors, with applications even for devices in the life sciences.
The diamond samples used in NV-centric research have been mainly pure diamonds due to the conventional wisdom that impurities would hold electron spins that generate noise. However, the research team, collaborating with the National Institute of Advanced Industrial Science and Technology, found that phosphorus-doped n-type diamonds have remarkably long spin-coherence times.
After careful study, the team found that the diamonds have the longest inhomogeneous spin-dephasing time and spin decoherence time recorded in room-temperature solid-state systems and the highest magnetic field sensitivity.
Norikazu Mizuochi from Kyoto University's Institute for Chemical Research, who lead the study, explains that the team was surprised that adding impurities to the NV diamond was the key to improve its spin coherence.
"Phosphorus is one of the causes of magnetic noise due to its electron spin," explains Mizuochi. "We hope our new results will greatly contribute to the ever-expanding field of quantum technology."
Suggested Items
Hon Hai Research Institute Achieves Breakthrough in Quantum Cryptography Recognized by Leading Global Conference
06/17/2025 | FoxconnHon Hai Research Institute (HHRI), the research arm of Hon Hai Technology Group (Foxconn), the world’s largest electronics manufacturer and technology service provider, has achieved a significant breakthrough in quantum computing.
VIAVI, Hanyang University Sign Memorandum of Understanding to Advance 6G Research
06/10/2025 | PRNewswireVIAVI Solutions Inc. and Hanyang University, one of South Korea's leading academic institutions, today announced a Memorandum of Understanding to collaborate on AI-RAN, 5G and 6G research at the university's Beyond-G Global Innovation Center.
IDC Increases its PC and Tablet Forecasts Despite Tariff Uncertainty
06/02/2025 | IDCAfter recording strong results in the first quarter of 2025, IDC is increasing its traditional PC forecast for 2025 — this comes despite the significant impact that US tariffs have had on its trading partners’ market sentiment.
IonQ Signs MoU with KISTI to Accelerate South Korea’s Role in the Global Quantum Race
06/02/2025 | IonQIonQ, a leading commercial quantum computing and networking company, today announced the signing of a memorandum of understanding (MoU) with the Korea Institute of Science and Technology Information (KISTI), a leading national science and technology research institute and supercomputing center.
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.