Using High Energy Density Material in Electrode Design Enhances Lithium Sulfur Batteries
October 2, 2019 | AIP.orgEstimated reading time: 2 minutes
Lithium ion batteries aren’t keeping up with energy demands from higher power electronic devices, electric vehicles and smart electric grids. To develop higher capacity batteries, researchers have looked to lithium sulfur batteries because of sulfur’s high theoretical capacity and energy density.
But there are still several problems to solve before lithium sulfur batteries can be put into practical applications, such as sulfur’s intrinsically low electrical conductivity and the rapid capacity decay caused by polysulfides escaping from the cathode.
The biggest problem is the shuttling effect that occurs during cycling. This effect causes the diffusion of polysulfides from the cathode, creating capacity loss. It also consumes a lot of fresh lithium and electrolytes, and reduces battery performance.
Four varieties of cathode design were tested: a) bare sulfur electrode, b) the partially confined structure PZ67/S, c) the partially confined structure S/PZ67 and d) the fully confined, sandwich structure PZ67/S/PZ67, which outperformed the others in both initial capacity and capacity after battery cycling. CREDIT: Xing Gao, Siwu Li, Ying Du and Bo Wang
To solve the shuttling problem and improve lithium sulfur battery performance, the authors of a paper published in APL Materials, from AIP Publishing, created a sandwich-structured electrode using a novel material that traps polysulfides and increases the reaction kinetics.
ZIF-67 is a metal-organic framework (MOF) constructed from metal ions or metal clusters and organic ligands. It holds great promise in gas storage and separation, catalysis and energy storage. MOF-derived materials are also attractive in energy storage due to their robust structure, porous surface and high conductivity.
A sandwich-structured electrode with sulfur immobilized in between PZ67 layers, PZ67/S/PZ67, improves the practical energy density of the lithium sulfur battery to three to five times higher than that of lithium ion batteries. The PZ67 is composed of polar materials, and the porous carbon showed a synergistic effect in the chemical interaction, served as a physical barrier, offered a high conductivity to prohibit the polysulfide shuttling effect and enhanced the batteries’ cycling performance.
“The porous PZ67 can not only absorb the polysulfides to form a confinement, it can also improve the kinetics of the actual active materials’ reaction during the battery cycling,” author Siwu Li said. “That means it may also improve the discharge voltage of the battery, and that is a big contribution to improving the energy density of the batteries.”
The sandwich-structured electrode that confines soluble polysulfides could be useful for anyone working to confine soluble materials, Li said. His team plans to continue their work in order to scale up the process of fabricating the hybrid electrode using a hot pressing procedure. They also plan to address instabilities on the anode side of lithium sulfur batteries, possibly by adding a protective layer.
Suggested Items
BWXT to Acquire L3Harris’ A.O.T. Business to Expand Special Materials Portfolio
11/05/2024 | L3Harris TechnologiesBWX Technologies, Inc. and L3Harris Technologies, Inc. announced the signing of a purchase agreement for BWXT to acquire L3Harris’ Aerojet Ordnance Tennessee, Inc. (A.O.T.) business for approximately $100 million.
Solid-State Batteries Enter Pilot Production, Costs Expected to Drop to CNY 0.6–0.7/Wh by 2035
11/01/2024 | TrendForceThe global pursuit and anticipation of applications for solid-state batteries (SSBs) have accelerated the commercialization process of this technology.
Robots in Logistics Boom Worldwide
10/31/2024 | BUSINESS WIREThe demand for robots for transport and logistics is increasing: Almost 113,000 robots were sold for transport and logistics tasks in 2023 – up 35%. These results are published by VDMA Materials Handling and Intralogistics Association in cooperation with the IFR.
Machine Learning Can Predict the Mechanical Properties of Polymers
10/30/2024 | ACN NewswirePolymers such as polypropylene are fundamental materials in the modern world, found in everything from computers to cars. Because of their ubiquity, it’s vital that materials scientists know exactly how each newly developed polymer will perform under different preparation conditions.
DELO Introduces UV-approach for Fan-out Wafer-level Packaging
10/25/2024 | DELODELO has developed a new approach for fan-out wafer-level packaging (FOWLP). Its feasibility study shows: With the use of UV-curable molding materials instead of heat curing ones, warpage and die shift can be reduced significantly. Additionally, this leads to improvements in curing time and minimizes the energy consumption.