-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Additive Electronics Conference Set for October 2019 Debut
October 15, 2019 | Kelly DackEstimated reading time: 9 minutes
Dack: From a design standpoint, can we expect to get answers for the application of these circuits and what to watch out for? As a designer, I’m very familiar with the rolled annealed copper that’s commonly used in flexible circuits. But I have a feeling that additive copper is not going to end up as rolled annealed and instead will be a crystalline structure. Are there mechanical ramifications to this? Will the conductive paths be more brittle and delicate?
Dunn: The keynote presentation by Rich Brooks, senior engineering manager at Jabil Circuit Inc., will include some of the additive applications that they have been involved with over the recent years.
Dack: At first, additive processing was often perceived as something mainly for HDI and the super high-tech end. But it sounds like it’s being used for all sorts of applications—not just for the cutting edge.
Dunn: It definitely has a role with HDI technology. It can help solve a couple of things, such as working with a 12-layered design with three lamination cycles; that’s expensive because each of those lamination cycles comes with yield loss at extra costs. And it also hurts the lead time when you need to expedite product, so that’s a challenge and a constraint. Instead, if you can bring in this additive process, or a semi-additive process, and replace specific layers in a stackup, it doesn’t have to be the entire circuit done that way; you can have some layers be with the additive process, with some being etched when they have larger features, and then you can integrate those together.
In one customer application, we went from 12 layers to eight layers, which cut the lamination cycles from three to one; that’s a significant change in the way that we look at designs and how we can process things. Beyond HDI, I also see single-sided or double-sided circuit applications benefiting from these very fine feature sizes. If you think of something like a neuro-probe application or something that’s going to be bonded to the tip of a catheter, you’ll realize that additive has new applications on its own and independent of HDI.
Dack: You mentioned semi-additive a couple of times. What’s the difference between additive and semi-additive? Is it combining a couple of processes? What do you mean by semi-additive?
Dunn: That’s a good question, and I probably use those interchangeably when I shouldn’t. In general, we’re looking at additive electronics: the additive, semi-additive process, and modified semi-additive processes all fall under that umbrella term. The additive process would be just fully additive in that you’re not starting with the seed layer of copper. You may start with a seed layer of a catalyst, image the catalyst, and then build the copper up from there; that can be a little limited in terms of how tall and wide your circuitry can be with that, but it certainly has its place. Down in the five-micron range is where we would see that technology come into play.
When we have slightly larger traces—such as 17, 25, or 50 microns—then either the semi-additive or modified semi-additive processes come into play, which both start with that seed layer of copper. Semi-additive tends to start with it as chemically applied, and modified semi-additive typically starts as copper-film based laminate, and it’s slightly thicker in the electroless seed layer.
Dack: It took me by surprise when you mentioned additive because I thought it required a seed layer of copper.
Dunn: There are a lot of options, which is exciting, and that’s one of the things that we’re looking forward to hearing about at the conference. We are going to kick off the conference with a keynote speaker from Jabil who we’re very excited to hear from, as I mentioned earlier. Then, we’re going to hear from different people who currently have a need for this technology, including NextFlex, Crane, and Lockheed Martin. They will explain the need that they see in the market. We’ll also have presenters who talk about different options that are going to be available to help fill the gap.
After we take a break, we’ll move on to some of the practical applications. How are these technologies being applied in low- to medium-volume production domestically right now? And what is planned for the future? One piece that is going to be very interesting for me is our very interactive panel discussion. All of our presenters and users of the technology will come up and sit on the panel, and we’re going to have case studies. Then, we’re going to take a bunch of questions from the audience. You will have a full range of technologies represented that, as an attendee, you can ask questions about.
Dack: That sounds really comprehensive. And since it’s in San Jose, it’s easy to fly in, fly out, and get all of the information one would need.
Dunn: And for those who are interested, it is being held in the same location as the International Wafer-Level Packaging Conference, which is taking place the three days before our event.
Dack: I see Lenora Clark from MacDermid Alpha Electronics Solutions is also involved with this conference. Tell me about that.
Dunn: I was talking with Tanya Martin from SMTA about new technologies out in the market. There was a lot of interest and questions being asked at the SMTA level, and I was being asked similar questions as someone working in the PCB industry. We both said, “I think there could be a need here for a conference and some new information for people to start looking at.” At that point, she introduced me to Lenora, who had been fielding similar questions and we’ve been working on the conference together ever since.
Dack: This is going to be interesting. I think the industry is really looking forward to hearing about the ideas discussed and the outcome of this event. Thank you for sharing.
Dunn: You’re welcome. This will be fun because I work with one part of the semi-additive process, but I’m excited to hear about all of the other options too.
Page 2 of 2Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.