NASA Commits to Future Artemis Missions With More SLS Rocket Stages
October 17, 2019 | NASAEstimated reading time: 4 minutes
NASA has taken the next steps toward building Space Launch System (SLS) rocket core stages to support as many as 10 Artemis missions, including the mission that will carry the first woman and next man to the Moon by 2024.
Image Caption: NASA finished assembling the main structural components for the Space Launch System (SLS) rocket core stage on Sept. 19. Engineers at NASA’s Michoud Assembly Facility in New Orleans fully integrated the last piece of the 212-foot-tall core stage by adding the engine section to the rest of the previously assembled structure. Credits: NASA/Steven Seipel
The agency intends to work with Boeing, the current lead contractor for the core stages of the rockets that will fly on the first two Artemis missions, for the production of SLS rockets through the next decade. The core stage is the center part of the rocket that contains the two giant liquid fuel tanks. Towering 212 feet with a diameter of 27.6 feet, it will store cryogenic liquid hydrogen and liquid oxygen and all the systems that will feed the stage’s four RS-25 engines. It also houses the flight computers and much of the avionics needed to control the rocket’s flight.
NASA has provided initial funding and authorization to Boeing to begin work toward the production of the third core stage and to order targeted long-lead materials and cost-efficient bulk purchases to support future builds of core stages. This action allows Boeing to manufacture the third core stage in time for the 2024 mission, Artemis III, while NASA and Boeing work on negotiations to finalize the details of the full contract within the next year. The full contract is expected to support up to 10 core stages and up to eight Exploration Upper Stages (EUS).
“It is urgent that we meet the President’s goal to land astronauts on the Moon by 2024, and SLS is the only rocket that can help us meet that challenge,” said NASA Administrator Jim Bridenstine. “These initial steps allow NASA to start building the core stage that will launch the next astronauts to set foot on the lunar surface and build the powerful exploration upper stage that will expand the possibilities for Artemis missions by sending hardware and cargo along with humans or even heavier cargo needed to explore the Moon or Mars.
An illustration of NASA’s Space Launch System (SLS) in the Block 1 configuration, which will carry an Orion spacecraft beyond the Moon, on the mobile launcher. SLS is the only rocket that can send the Orion spacecraft, astronauts and supplies to the Moon on a single mission.
Boeing’s current contract includes the SLS core stages for the Artemis I and Artemis II missions and the first EUS, as well as structural test articles and the core stage pathfinder. The new contract is expected to realize substantial savings compared to the production costs of core stages built during the design, development, test and evaluation phase by applying lessons learned during first-time builds and gaining efficiencies through bulk purchases.
“NASA is committed to establishing a sustainable presence at the Moon, and this action enables NASA to continue Space Launch System core stage production in support of that effort to help bring back new knowledge and prepare for sending astronauts to Mars,” said John Honeycutt, SLS Program Manager at Marshall. “SLS is the only rocket powerful enough to send Orion, astronauts and supplies to the Moon on a single mission, and no other rocket in production today can send as much cargo to deep space as the Space Launch System rocket.
For the first three Artemis missions, the SLS rocket uses an interim cryogenic propulsion stage to send the Orion spacecraft to the Moon. The SLS rocket is designed to meet a variety of mission needs by evolving to carry greater mass and volume with a more powerful EUS. The EUS is an important part of Artemis infrastructure needed to send astronauts and large cargo together, or larger cargo-only shipments, to the Moon, Mars and deep space. NASA aims to use the first EUS on the Artemis IV mission, and additional core stages and upper stages will support either crewed Artemis missions, science missions or cargo missions.
“The exploration upper stage will truly open up the universe by providing even more lift capability to deep space,” said Julie Bassler, the SLS Stages manager at Marshall. “The exploration upper stage will provide the power to send more than 45 metric tons, or 99 thousand pounds, to lunar orbit.”
The Space Launch System rocket, Orion spacecraft, Gateway and Human Landing System are part of NASA’s backbone for deep space exploration. Work is well underway on both the Artemis I and II rockets, with core stage assembly nearly complete at Michoud. Soon, the stage will be shipped to NASA’s Stennis Space Center near Bay St. Louis, Mississippi, where it will undergo Green Run testing, an integrated test of the entire new stage that culminates with the firing of all four RS-25 engines. Upon completion of the test, NASA’s Pegasus barge will take the core stage to NASA’s Kennedy Space Center in Florida where it will be integrated with other parts of the rocket and Orion for Artemis I. Boeing also has completed manufacturing most of the main core stage structures for Artemis II.
The Artemis program is the next step in human space exploration. It’s part of NASA’s broader Moon to Mars exploration approach, in which we will quickly and sustainably explore the Moon and use what we learn there to enable humanity’s next giant leap, sending astronauts to Mars.
For more information about SLS visit: https://www.nasa.gov/sls
Suggested Items
PI's New Expansion for Higher Electronics Manufacturing Capacities and Shorter Lead Times
11/20/2024 | PRNewswirePI, the market and technology leader for high-precision motion control, positioning technology, and piezo applications, has completed the construction of additional electronics production space at its Rosenheim, Germany site.
Orbex Welcomes Contract Extension and Additional Funding from ESA’s Boost! Programme
11/19/2024 | OrbexLeading orbital launch services company, Orbex has today welcomed the extension of its contract with the European Space Agency’s (ESA) Boost! Programme and additional funding of €5.6 million.
L3Harris Delivers Optical System to NASA for Nancy Grace Roman Space Telescope
11/19/2024 | L3Harris TechnologiesL3Harris Technologies has delivered the Optical Telescope Assembly (OTA) to NASA that serves as the critical “eye” for the Nancy Grace Roman Space Telescope by providing precise and stable imagery.
NRL Completes Development of Robotics Capable of Servicing Satellites, Enabling Resilience for the U.S. Space Infrastructure
11/18/2024 | NRLU.S. Naval Research Laboratory (NRL) Naval Center for Space Technology (NCST) in partnership with Defense Advanced Research Projects Agency (DARPA) successfully completed development of a spaceflight qualified robotics suite capable of servicing satellites in orbit, Oct. 8.
RTX's Raytheon Awarded U.S. Army Contract for Wireless Power Beaming Technology
11/18/2024 | Raytheon TechnologiesRaytheon, an RTX, has been awarded a contract from the U.S. Army to work on directed energy wireless power beaming capabilities that will distribute power across the battlefield, simplify logistics, and safeguard locations for U.S. troops.