-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
New Type of Transistor One Step Closer
October 18, 2019 | University of GroningenEstimated reading time: 2 minutes

In order to make transistors that operate using the spin of electrons, rather than their charge, it is necessary to find a way of switching spin currents on and off. Furthermore, the lifetime of the spins should at least be equal to the time taken for these electrons to travel through a circuit. University of Groningen scientists have now taken an important step forward by creating a device that meets both of these requirements, based on a double layer of graphene on top of a layer of tungsten disulfide. Their results have been published on 16 October in the journal Physical Review B.
Graphene, a two-dimensional form of carbon, is an excellent conductor of electron spins. However, it is difficult to manipulate spin currents in this material. Spin is a quantum mechanical property of electrons, which makes them behave like tiny magnets. The Physics of Nanodevices group at the University of Groningen, led by Professor Bart van Wees, is working on this problem. They have previously shown that it is possible to control spin currents if the graphene is placed on top of a layer of tungsten disulphide (another 2D material).
New Technique
"However, this approach reduces the lifetime of the spins," explains Siddhartha Omar, a postdoc in the Van Wees group. Tungsten is a metal, and its atoms influence the electrons passing through the graphene, dissipating the spin currents. This led Omar to use a double layer of graphene on the tungsten disulphide, based on the theory that electrons passing through the upper layer should 'feel' less of the metal atoms' influence.
Omar also used another new technique, in which two different types of spin current are passed through the graphene. Spin is a magnetic moment that has a given direction. In normal materials, the spins are not aligned. However, the magnetic moment of spin currents—like that of magnets—has a preferential alignment. Relative to the material through which the electrons are passing, their spins can either have an in-plane orientation or an out-of-plane orientation.
Energy Level
"We found that, as the electrons pass through the outer graphene layer, the in-plane spins are dissipated very quickly—in mere picoseconds. However, the lifetime of the out-of-plane spins is about one hundred times longer." This means that, even in the presence of tungsten disulphide, one component of spin currents (spins with an out-of-plane orientation) can travel far enough to be used in devices such as transistors.
The energy level of the spin currents observed by Omar caused them to pass through the upper layer of graphene. This energy level can be boosted by applying an electric field, pushing the spin currents into the lower layer. "Down there, the spins will feel the full effect of the metal atoms and the spin currents will quickly dissipate," Omar explains. This ability to switch the spin current off using an electric field is important, as it could be used to 'gate' transistors based on this technology.
"Unfortunately, certain technical limitations of the substrate on which we built these devices prevent us from creating electric fields that are strong enough to produce this gating effect," says Omar. "However, we have shown that it is possible to send spin currents through a heterostructure made of graphene and tungsten disulphide. That is an important step towards the creation of a spin transistor."
Suggested Items
SAIC Awarded New $55 Million Mission Integration Contract From Space Development Agency
05/05/2025 | SAICScience Applications International Corp. has been awarded the Proliferated Warfighter Space Architecture (PWSA) Tranche 3 Program Integration (T3PI) contract from the Space Development Agency (SDA).
Driving Innovation: Registration in PCB Production Throughout the Process
05/06/2025 | Simon Khesin -- Column: Driving InnovationPCB manufacturing is a fascinating industry where multiple disciplines—chemical, mechanical, and optical processes—intersect. Each field plays a crucial role, and missing even one step can significantly impact production and yield. In the realm of mechanical and optical processes, one of the most critical aspects influencing the final result—especially in complex PCB designs—is registration.
OKI Develops 124-Layer PCB Technology for Next-Generation AI Semiconductor Testing Equipment
04/28/2025 | BUSINESS WIREOKI Circuit Technology, the OKI Group printed circuit board (PCB) company, has successfully developed 124-layer PCB technology for wafer inspection equipment designed for next-generation high bandwidth memory, such as HBM mounted on AI semiconductors.
Tandem Panel Shipments to Jump Again to 36% in 2026
04/25/2025 | BUSINESS WIREAccording to recent display industry research from Omdia, tandem RGB penetration into the OLED tablet and notebook panel markets surged from almost zero to more than 30% in 2024.
SERMA Microelectronics Expand its Facilities in La Rochelle
04/22/2025 | SERMA MicroelectronicsSERMA Microelectronics, a major player in specialized microelectronics, continues its growth with the acquisition of a building adjacent to its current site in La Rochelle.