Experiment Measures Velocity in 3D
October 23, 2019 | University of Illinois at Urbana-ChampaignEstimated reading time: 2 minutes

Many of today’s scientific processes are simulated using computer-driven mathematical models. But for a model to accurately predict how airflow behaves at high speeds, for example, scientists need supplemental real-life data. Providing validation data, using up-to-date methods, was a key motivating factor for a recent experimental study conducted by researchers at the University of Illinois at Urbana-Champaign.
“We created a physical experiment that could measure the flow field that others try to simulate with computational models to predict turbulence. It validates their models and gives them additional data to compare their results against, particularly in terms of velocity,” said Kevin Kim, a doctoral student in the Department of Aerospace Engineering.
Kim said the wind tunnel that was built and the design of the experiments were based on simple geometry and fundamental physics that allowed them to manipulate two streams of airflow, one from an air tank and the other from ambient room air. There is a physical barrier between the two streams before they reach the test section of the wind tunnel, where they begin to mix. Images are taken of seed particles in the flow.
“There are two nozzles that come after the air tank. We changed the geometry of one of the nozzles to change the overall Mach number, then studied the different mixing layers where the two flows meet,” Kim said. “Depending on the different speeds of the two streams coming in, you start to see different characteristics of the mixing.”
The primary free stream speed started at subsonic Mach 0.5, and increased to 2.5 in 0.5 increments. The secondary free stream was all subsonic, below Mach 1.
Kim said that in most previous experiments of this flow field, velocity has generally only been measured in two directions: in the direction of the freestream and perpendicular to it. What made this experiment unique is that velocity measurements were also taken in the span-wise direction for all of the different Mach numbers.
“Low-speed, incompressible cases, are largely characterized by two-dimensional mixing, so you can get a lot of important information from just looking at the X and Y components,” Kim said. “Because we increased the Mach number, the compressibility goes up in the shear layer. Consequently, we see wider-scale mixing in the span-wise direction that we didn't see when it was incompressible. A key target of the work was to make sure we got that third component of velocity to understand how it relates to the overall turbulence with changing compressibility. And also to capture the incoming flow conditions, the boundary layers.”
According to Kim, only two other mixing layer experiments have been performed that obtained all three components of velocity. “Our results match up with theirs, which validates our own experiments, but we took it further by measuring the flow for a wide range of Mach numbers.”
He said one direct real-world application for this work is for improving scramjet combustion, in which supersonic air comes in through the combustor and mixes with fuel.
“Scientifically, the main application is the fact that we have these results for a very fundamental flow field that simulators now can use to validate their models. Also, all of our data are available to the public through a University of Illinois Wiki page,” Kim said. “I hope that a lot of people use this information in their modeling and that it can ultimately help improve the accuracy and advance the methods in high-speed flow simulations.”
Suggested Items
TT Electronics Secures Multi-Million-Pound Defense Contract with Ultra PCS
07/18/2025 | TT ElectronicsTT Electronics, a leading provider of global manufacturing solutions and engineered technologies, announced that it has been awarded a significant new contract with long-standing customer Ultra PCS Ltd (Ultra Precision Control Systems).
NEOTech’s Agave 1 Facility Earns AS9100 Certification for Commercial Aerospace Manufacturing Excellence
07/17/2025 | NEOTechNEOTech, a premier provider of electronic manufacturing services (EMS), integrated design engineering, and advanced supply chain solutions for the aerospace and defense, medical device, and high-tech industrial markets, proudly announces that its Agave 1 manufacturing facility in Juarez, Mexico has officially received AS9100 certification.
Federal Electronics Invests in HydroJet Inline Cleaning Technology at Hermosillo Facility
07/15/2025 | Federal ElectronicsFederal Electronics, a leader in providing advanced electronic manufacturing services, has strengthened the advanced cleaning capabilities of its Hermosillo, Mexico facility with the recent installation of a HydroJet Inline Cleaner from Austin American Technology (AAT).
FTG Announces Q2 2025 Financial Results
07/09/2025 | Globe NewswireFiran Technology Group Corporation announced financial results for the second quarter 2025. Revenue: Recorded at $48.7 million, a 25.6% increase over Q2 2024.
Moog Announces Acquisition of COTSWORKS
07/07/2025 | BUSINESS WIREMoog Inc., a worldwide designer, manufacturer and systems integrator of high-performance precision motion and fluid controls and control systems, announced the acquisition of COTSWORKS Inc., an aerospace and defense fiber optics transceiver component manufacturer, for a purchase price of $63 million.