Pre-Programmed Microfluidic Systems Offer New Control Capabilities
October 24, 2019 | Northwestern UniversityEstimated reading time: 2 minutes
 
                                                                    Microfluidic systems have the power to revolutionize medicine, energy, electronics and even space exploration. But the sheer size of the external equipment required for controlling these quarter-sized devices has limited their use in portable, wearable technologies.
Now Northwestern University researchers are pushing microfluidics closer to reaching its true potential.
In a recent study, the researchers discovered how to pre-program the devices’ network structures in a way that controls how fluids flow and mix throughout the micropipes. The result? A step toward smartly designed microfluidic systems that behave like a computer chip without relying on external components.
“Current microfluidic technology often requires a desktop full of equipment to operate something the size of a quarter,” said Northwestern’s Adilson Motter, senior author of the study. “We took the control that’s provided by external systems and built it into the device’s structure.”
The study was published today (Oct. 23) in the journal Nature. Motter is the Charles E. and Emma H. Morrison Professor of Physics at Northwestern’s Weinberg College of Arts and Sciences. Daniel Case, a graduate student in Motter’s lab, is the paper’s first author. The Northwestern team worked with collaborators at St. Louis University and the University of Normandy in France.
Microfluidic systems are miniaturized chemical labs formed by a network of pipes — each of which is the width of a strand of hair. These devices can be used for applications ranging from conducting small-scale experiments to performing complex medical diagnostics, drug delivery, and health monitoring.
The problem is that — in order to perform complicated tests and experiments — multiple fluids need to flow, mix, react, separate and switch directions all within these tiny networks. Each activity requires a pressure pump, and each pump is controlled by an external device. Researchers have struggled for the past few decades, trying — and often failing — to coax fluids to move through these networks autonomously, without needing external equipment.
“Imagine being able to pack up devices and put them on space rovers,” Case said. “You could run a chemical analysis on Mars. But the burden of needing all this external equipment really restricts that possibility.”
Motter, Case and their collaborators finally designed a microfluidic network in which all mixing sequences are pre-programmed. In their design, one source of applied pressure — instead of dedicated equipment — controls the fluids within the network. By designing how much pressure is needed and the location where pressure is applied, the researchers pre-determined how the fluid flowed through the network.
The team also increased the fluid’s flow rate by removing one of the hair-like channels in the system. Case likens this to Braess’s paradox, a famous mathematical observation that removing a road from a traffic network can improve traffic flow.
“In these networks, you have fluid streams from multiple pipes that are connected,” Case said. “Fluids collide with each other at the junction, and these collisions create inefficiencies, so connections in the network introduce localized regions of congestion. When you remove the channels that create these connections, you also remove points of collision.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Hofstetter PCB Group Purchases Mass-PCB Vacuum-Filling & Planarising System from Adeon Technologies for New Via Filing Subcontract Services
10/30/2025 | ADEON TechnologiesDuring the Productronica Exhibition in Munich from November 18 through to 21, Adeon is announcing the sale of the newest 2025 model Via Filling equipment with Large Container System and the Planarising system from Mass-PCB to SMF-Hofstetter from Herrenberg, Germany.
ITW EAE to Showcase Latest Electronic Assembly Equipment Developments at productronica
10/21/2025 | ITWITW EAE will be showcasing its latest developments at productronica, November 18-21 in Munich, Germany. The ITW EAE booth A4–554 will have MPM, Camalot, Electrovert, Vitronics Soltec and Despatch applications experts on hand as well as sales and management to answer questions and offer solutions.
The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible
10/22/2025 | Don Ball -- Column: The Chemical ConnectionIn the past year, several potential customers, concerned about the impending application of tariffs on incoming goods, have asked us what it would take to bring their circuit board production back to the U.S. While they also had other considerations, the threat of new tariffs was the tipping point that started them thinking about the economic advantages of bringing their manufacturing back onshore. It might be interesting to relate our experiences with two of those inquiries.
Ruben Zambrano Joins Technica USA as PCB Equipment Service Technician
10/21/2025 | Technica USATechnica USA is proud to announce that Ruben Zambrano has rejoined Team Technica as PCB Equipment Service Technician.
SASinno Americas Strengthens Field Service Capabilities with Addition of Oscar Ortiz González in Mexico
10/10/2025 | SASinno AmericasSASinno Americas is proud to announce the addition of Oscar Ortiz González as Senior Field Service Engineer, based in Mexico.

 
                         
                                     
                                     
                                     
                                     
                                             
                                             
                                             
                                             
                                             
                                             
                                     
                                             
                                             Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
                                         Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production It’s Only Common Sense: Your Biggest Competitor Is Complacency
                                         It’s Only Common Sense: Your Biggest Competitor Is Complacency The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible
                                         The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible





 
                     
                 
                    