Physicists Make One Step Toward Using Insulating Antiferromagnetic Materials in Future Computers
October 25, 2019 | JGUEstimated reading time: 2 minutes
Future computer technology based on insulating antiferromagnets is progressing. Electrically insulating antiferromagnets such as iron oxide and nickel oxide consist of microscopic magnets with opposite orientations. Researchers see them as promising materials replacing current silicon components in computers. Physicists at Johannes Gutenberg University Mainz (JGU) in collaboration with Tohoku University in Sendai in Japan, the synchrotron sources BESSY-II at Helmholtz-Zentrum Berlin (HZB), and Diamond Light Source, the UK's national synchrotron, have demonstrated how information can be written and read electrically in insulating antiferromagnetic materials.
By correlating the change in the magnetic structure, observed with synchrotron-based imaging, to the electrical measurements performed at JGU, it was possible to identify the writing mechanisms. This discovery opens the way toward applications ranging from ultra-fast logic to credit cards that cannot be erased by external magnetic fields – thanks to the superior properties of antiferromagnets over ferromagnets. The research has been published in Physical Review Letters.
Antiferromagnetic materials, interesting and not useless
Antiferromagnetic materials potentially allow for memory elements much faster and with higher storage capacity than what it is available now with conventional electronics. However, these materials are very difficult to control and detect, which makes the writing and reading operations in devices challenging. In his 1970 Nobel Prize speech, Louis Néel described antiferromagnetic materials as interesting but useless. It was believed that one can manipulate these materials only by very strong magnetic fields, which cannot be generated easily and require, for example, the use of superconducting magnets. The situation has changed drastically in the last few years, with reports showing that it is possible to control antiferromagnetic materials including even insulators efficiently by electrical currents.
International collaboration studying the advantages of spintronics with antiferromagnets over conventional electronics
"We know that we are going to reach soon the limits of conventional electronics based on silicon, due to the continuous technological improvement. That is the main reason driving research in spintronics, which aims to exploit not only the charge of the electrons but also the spin degree of freedom, doubling the information carried and computed", said Dr. Lorenzo Baldrati, Marie Skłodowska-Curie Fellow at Mainz University and first author of the paper.
"Our research shows that antiferromagnetic insulator materials can be written efficiently and read electrically, which is a key step in view of applications." Lorenzo Baldrati works in the laboratory headed by Professor Mathias Kläui. "I am very happy to see our fruitful collaboration with our colleagues in Japan and groups in Mainz leading to another joint publication. With the support of the German Academic Exchange Service (DAAD), the Graduate School of Excellence Materials Science in Mainz (MAINZ) and the German Research Foundation (DFG), we were able to initiate a lively exchange between Mainz and Sendai and with various other theory groups."
Professor Olena Gomonay of the JGU-based group of Professor Jairo Sinova developed the theory. "I enjoyed the joint work the experimental colleagues in Mainz. It was exciting to see how theory and experiment help each other to discover new physical mechanisms and phenomena", said Golomay. "Through our work focused on only one particular system, it can be considered as a proof-of-principle for the family of antiferromagnetic insulators. We hope that the deep understanding of antiferromagnetic dynamics, which we achieved during this project, will push forward the exciting field of antiferromagnetic spintronics and will be a starting point for new joint projects from our groups."
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).

 
                         
                                     
                                     
                                     
                                     
                                             
                                             
                                             
                                             
                                             
                                             
                                     
                                             
                                             Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
                                         Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production It’s Only Common Sense: Your Biggest Competitor Is Complacency
                                         It’s Only Common Sense: Your Biggest Competitor Is Complacency The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible
                                         The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible





 
                     
                 
                    