Solar Cars at $15 Billion: Just the Beginning
November 1, 2019 | IDTechExEstimated reading time: 3 minutes

Solar vehicle bodywork has just progressed from curiosity to key enabling technology. The new 180-page IDTechEx report, “Solar Cars, Buses, Trucks, Trains 2020–2030,” explains why and forecasts the next 10 years with solar cars at $15 billion by 2030 as just the beginning. The focus is mainly road vehicles. Solar already provides significant car traction power. Learn why anyone now designing a car or car-like vehicle will be inept if they do not at least consider solar bodywork because a tipping point of viability has arrived, with big orders being placed. This is driven by newly affordable integral and conformal solar and solar sides to vehicles becoming viable (e.g., cars, camper vans, snow vehicles, small buses, boats). Prices drop for the more powerful single crystal silicon now preferred. Vehicles need less electricity. Targeting smaller batteries makes solar more appealing to combat battery shortages, fires with large batteries, size, weight, and cost of ownership.
The situation with buses, large trucks, and trains is also analyzed to understand how only special cases get at least 10% of power from onboard solar but it is becoming attractive. Learn the tipping points as new technologies become viable. Examples are affordable compound and multijunction cells (Toyota, Sharp) even as a wrap (Hanergy), expanding solar, solar windows, and adding onboard wind-power (several on-land and boats). New user propositions include transport-with-microgrid.
The expensive new Lightyear solar car has a substantial order book and record 730-km range with half the battery needed due to the best drag factor and powertrain efficiency plus good solar. Compare the parameters of the most successful solar family car, the affordable Sono Motors Sion. Over 10,000 ordered puts to shame many traditional car companies making similar pure-electric, five-seater cars without solar. For now, failure to meet the 320 km/200 mile tipping point for regular pure-electric vehicles to sell well and have good resale value is no impediment. That is because it is inspiring, offering complete energy independence for the many commuters using their cars sparingly, as does Lightyear.
The report shows how energy-positive vehicles will become commercially available. With hybrids, learn how the giant Hyundai is setting the pace with one model newly offering a solar roof adding 10% to range for many light users buying it and Toyota trials generating even more power. Others need to wake up. This is now key enabling technology. Hyundai has two other solar body types planned. There are many types of cars, car-like vehicles, boats, and planes that can be called solar vehicles (increasing range by at least 10%). Invisible or extending solar? Spray on solar? It is all here.
The executive summary, including 36 primary conclusions, assesses sales and technology, benefits and challenges, and forecasts numbers, value, and value market for solar cars for 2020–2030, separating premium from the mainstream. The introduction through Chapter 2 shows the widening choices of electric vehicle powertrain and comparison of photovoltaic parameters, benefits, challenges, performance, and manufacturers. Copper-indium-gallium-diselenide thin-film photovoltaics is pictured in action in four countries. Why? Best practice in solar boats and aircraft gives lessons. Ten key technologies for energy-independent electric vehicles are presented. High-power energy harvesting discussion puts it in context.
Chapter 3 explores solar cars in 18 countries with an emphasis on commercial success and benefits to society. Chapter 4 looks at truly solar buses and trucks and weaker precursors. Twelve countries are covered, even equatorial and Antarctic solar vehicles and multipurposing. Chapter 5 explains the modest benefit of solar on trains but the huge potential of off-grid solar power for trains mainly based on trackside panels. Chapter 6 looks at lessons from agribots, aircraft, and boats; then, the report ends with Chapter 7 on future enabling technologies, such as bodywork that both make and store energy. Learn about energy-positive and multi-mode vehicles coming, including their technologies and uses. The revolutionary “zero genset” concept of IDTechEx is explained with its $100 billion yearly potential for zero-emission mobile gensets some combining transport services.
“Solar Cars, Buses, Trucks, Trains 2020–2030” is part of ongoing research by globetrotting Ph.D.-level analysts in IDTechEx. They carry out technical interviews in local languages and access privileged databases and are respected presenters and consultants in the subject.
To find out more about Electric Vehicle research available from IDTechEx, visit www.IDTechEx.com/research/EV, and to connect with others on this topic, IDTechEx is hosting an event: "Electric Vehicles: Everything Is Changing," from November 20–21, 2019, in Santa Clara, California. Find out more at www.IDTechEx.com/EVUSA.
IDTechEx guides your strategic business decisions through its Research, Consultancy and Event products, helping you profit from emerging technologies. For more information on IDTechEx Research and Consultancy contact, research@IDTechEx.com or visit www.IDTechEx.com.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.
50% Copper Tariffs, 100% Chip Uncertainty, and a Truce
08/19/2025 | Andy Shaughnessy, I-Connect007If you’re like me, tariffs were not on your radar screen until a few months ago, but now political rhetoric has turned to presidential action. Tariffs are front-page news with major developments coming directly from the Oval Office. These are not typical times. President Donald Trump campaigned on tariff reform, and he’s now busy revamping America’s tariff policy.
Global PCB Connections: Understanding the General Fabrication Process—A Designer’s Hidden Advantage
08/14/2025 | Markus Voeltz -- Column: Global PCB ConnectionsDesigners don’t need to become fabricators, but understanding the basics of PCB fabrication can save you time, money, and frustration. The more you understand what’s happening on the shop floor, the better you’ll be able to prevent downstream issues. As you move into more advanced designs like HDI, flex circuits, stacked vias, and embedded components, this foundational knowledge becomes even more critical. Remember: the fabricator is your partner.