Gift Will Allow MIT Researchers to Use Artificial Intelligence in a Biomedical Device
January 29, 2020 | MITEstimated reading time: 1 minute

Researchers in the MIT Department of Civil and Environmental Engineering (CEE) have received a gift to advance their work on a device designed to position living cells for growing human organs using acoustic waves. The Acoustofluidic Device Design with Deep Learning is being supported by Natick, Massachusetts-based MathWorks, a leading developer of mathematical computing software.
“One of the fundamental problems in growing cells is how to move and position them without damage,” says John R. Williams, a professor in CEE. “The devices we’ve designed are like acoustic tweezers.”
Inspired by the complex and beautiful patterns in the sand made by waves, the researchers' approach is to use sound waves controlled by machine learning to design complex cell patterns. The pressure waves generated by acoustics in a fluid gently move and position the cells without damaging them.
The engineers developed a computer simulator to create a variety of device designs, which were then fed to an AI platform to understand the relationship between device design and cell positions.
“Our hope is that, in time, this AI platform will create devices that we couldn’t have imagined with traditional approaches,” says Sam Raymond, who recently completed his doctorate working with Williams on this project. Raymond’s thesis title, "Combining Numerical Simulation and Machine Learning," explored the application of machine learning in computational engineering.
“MathWorks and MIT have a 30-year long relationship that centers on advancing innovations in engineering and science,” says P.J. Boardman, director of MathWorks. “We are pleased to support Dr. Williams and his team as they use new methodologies in simulation and deep learning to realize significant scientific breakthroughs.”
Williams and Raymond collaborated with researchers at the University of Melbourne and the Singapore University of Technology and Design on this project.
Suggested Items
Flex Wins Two 2025 PACE Awards for Innovation in Automotive Compute and Power Electronics
04/22/2025 | PRNewswireFlex was named a two-time 2025 Automotive News PACE Award winner at the awards ceremony on April 15, recognized for its industry-leading Jupiter Compute Platform and Backup DC/DC Converter design platforms.
Material Selection and RF Design
04/21/2025 | Andy Shaughnessy, Design007 MagazineInnovation rarely sleeps in this industry, and the RF laminate segment offers a perfect example. RF materials have continued to evolve, providing PCB designers much more than an either/or choice. I asked materials expert Alun Morgan, technology ambassador for the Ventec International Group, to walk us through the available RF material sets and how smart material selection can ease the burden on RF designers and design engineers.
Real Time with... IPC APEX EXPO 2025: Aster–Enhancing Design for Effective Testing Strategies
04/18/2025 | Real Time with...IPC APEX EXPOWill Webb, technical director at Aster, stresses the importance of testability in design, emphasizing early engagement to identify testing issues. This discussion covers the integration of testing with Industry 4.0, the need for good test coverage, and adherence to industry standards. Innovations like boundary scan testing and new tools for cluster testing are introduced, highlighting advancements in optimizing testing workflows and collaboration with other tools.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Electronic System Design Industry Posts $4.9 Billion in Revenue in Q4 2024
04/15/2025 | SEMIElectronic System Design (ESD) industry revenue increased 11% to $4,927.3 million in the fourth quarter of 2024 from the $4440.9 million reported in the fourth quarter of 2023, the ESD Alliance, a SEMI Technology Community, announced in its latest Electronic Design Market Data (EDMD) report.