Mitsubishi Electric Develops MEMS LiDAR Solution for Autonomous Vehicles
March 12, 2020 | Business WireEstimated reading time: 2 minutes

Mitsubishi Electric Corporation announced today that it has developed a compact light-detection and ranging (LiDAR) solution incorporating a micro-electromechanical system (MEMS) that achieves an extra-wide horizontal scanning angle to accurately detect the shapes and distances of objects ahead in autonomous driving systems. The new LiDAR solution irradiates objects by laser and uses a dual-axis (horizontal and vertical) MEMS mirror to scan for the reflected light, generating three-dimensional images of vehicles and pedestrians. Mitsubishi Electric expects this compact, low-cost solution to contribute to the realization of safe, secure autonomous driving.
Key Features
- Large dual-axis electromagnetic mirror with unique lightweight design enabling wide scanning angleAfter objects are irradiated by laser, the maximum amount of reflected light must be collected in order to obtain the most precise three-dimensional images, particularly of vehicles and pedestrians. LiDAR systems therefore require mirrors with a large surface area in order to maximize light collection. Additionally, a wide scanning angle is required for accurate vehicle periphery monitoring. Mitsubishi Electric's new development incorporates the industry's largest electromagnetic MEMS mirror, measuring 7mm by 5mm, in a lightweight design which is able to scan horizontally and vertically. Despite its size, the unique structure of the MEMS mirror facilitates a reduction in weight without sacrificing rigidity. The lightweight design and high electromagnetically generated driving force allows the mirror to achieve large horizontal movement of ±15 degrees. Vertical movement is currently ±3.4 degrees, and Mitsubishi Electric aims to increase this to ±6.0 degrees or more by improving the beam structure of the MEMS.The MEMS mirror can be produced in large quantities on a silicon substrate using semiconductor-processing technology, making it suitable for mass production. In addition, it uses fewer parts compared to mirrors driven mechanically with motors, which will contribute to the durability of the LiDAR solution.
- Optimized design supports downsizing as well as acquisition of 3-D images over wide areaMitsubishi Electric has optimized the arrangement of the electromagnetic MEMS mirror and optical components—including multiple laser light sources, photodetectors and lenses—to suppress optical vignetting and to avoid the laser beam being distorted by any of the LiDAR's internal components. The optimized design and optical transmission/reception mechanism achieve an extra-wide horizontal scanning angle, enhancing the scanning of vehicles ahead or oncoming vehicles, pedestrians crossing the road, traffic lights, traffic signs, and roadside obstacles. With continued development, Mitsubishi Electric aims to achieve a vertical scanning angle exceeding 25 degrees, which will allow the detection of vehicles and pedestrians even in close proximity.The LiDAR body has a volume of just 900 cc owing to optimal arrangement of the signal processing circuitry, power supply circuit and optical transmission/reception mechanism. Going forward, Mitsubishi Electric is targeting development of an extra-small unit with a volume of just 350 cc or less.
Suggested Items
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Siemens Turbocharges Semiconductor and PCB Design Portfolio with Generative and Agentic AI
06/24/2025 | SiemensAt the 2025 Design Automation Conference, Siemens Digital Industries Software today unveiled its AI-enhanced toolset for the EDA design flow.
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?
Beyond Design: The Metamorphosis of the PCB Router
06/18/2025 | Barry Olney -- Column: Beyond DesignThe traditional PCB design process is often time-consuming and labor-intensive. Routing a complex PCB layout can consume up to 30% of a designer’s time, and addressing this issue is not straightforward. We have all encountered this scenario: You spend hours setting the constraints and finally hit the Go button, only to be surprised by the lack of visual appeal and the obvious flaws in the result.
Copyright © I-Connect007 | IPC Publishing Group Inc. All rights reserved.
Log in