What It Takes to Be a Milaero Supplier, Part 3
April 28, 2020 | Anaya Vardya, American Standard CircuitsEstimated reading time: 4 minutes

Introduction
The decision to pursue military and aerospace (milaero) certification impacts every facet of the organization, and not every shop is prepared to make this transformation. This is the third article in a four-part series, breaking down what it takes in sales and customer service, engineering and CAM, purchasing and quality, and manufacturing. Part 3 will explore what it takes to be a milaero supplier in the areas of purchasing and quality.
Purchasing Impact
Purchasing is perhaps the most critical business process as far as the milaero industry is concerned. Normally, the processes examined during AS9100 surveillance audits are rotated so that the entire QMS is covered over the course of the three-year certification period—except purchasing. Purchasing will be audited each and every time, and the auditor will focus on traceability through the entire process from quoting to shipping. The auditor will typically request a number of your aerospace customer POs, which will be comprehensively reviewed for product requirements.
This class of customer will normally have its own specification that can contain anywhere from 10 to 40 pages of quality requirements. This auditor review will entail establishing which quality requirements apply to each order, based on the PO callouts, and then verify that each of them has been addressed (added to the traveler, special customer requirement sheets, test plans, etc.). Many of the quality requirements are “flow down” requirements, meaning that you also need to communicate these requirements to any applicable suppliers. The part-number travelers will be reviewed for process accuracy, proper signoff, and raw material traceability along with any inspection and test reports. The auditor will verify that not only has this been done, but they will look for evidence that the suppliers have met the requirements. The process for MIL-PRF-31032 will be the same stringent review of military customer POs.
Another interesting requirement with aerospace products is the requirement regarding nonconforming material. Typical practice with PCB fabricators is to mark each nonconforming scrap PCB with an “X” in permanent ink, which are referred to as X-outs. Aerospace requires that companies take an extra step, no pun intended, by requiring: “Product dispositioned for scrap shall be conspicuously and permanently marked, or positively controlled, until physically rendered unusable.” This can be accomplished in a number of ways as long as the PCB will no longer be functional.
Quality Impact
Aerospace products require some additional documentation, such as AS9102 first article inspection reports. While companies normally perform first article inspections, this version is considerably more detailed and comprehensive. Many organizations task the quality team to participate in the contract review process and be responsible for the review and implementation of customer quality requirements on each order.
MIL-PRF-31032 orders are where the impact on quality is extremely high in more than one area. Microsectioning is absolutely the most taxing to the quality department and often requires additional personnel to handle the workload. Many commercial shops utilize an AQL sample methodology with regard to microsection frequency. Military orders require a 200% microsection frequency (one each in the X- and Y-axis per panel), plus numerous other sections for solderability and thermal shock testing. Further, most shops perform in-process plating sections for process control on military orders as additional copper thickness is often required.
There are also special Defense Logistics Agency (DLA) reporting that needs to be done for military orders. Special inspection forms need to be completed for each order, and coupons from the most complex military products produced each month must be sent out to an approved third-party lab for analysis. Each traveler must be reviewed for accuracy and reconciliation of build quantities (number started, shipped, scrapped. and reworked). All of the above become part of an annual report that must be submitted to the DLA for review and approval.
The organization must also establish a technical review board (TRB) that meets regularly to review the performance of the company. The responsibilities of the TRB are closely scripted and include the approval of all changes, new suppliers, the review of performance metrics, any new technology added onto military products, the number of military orders produced and inspection results, and the results of the third-party lab inspections.
Conclusion
In these two departments, becoming a milaero manufacturer changes the game significantly, adding new processes and a much higher degree of complexity when dealing with milaero orders. Milaero products demand some of the most technically challenging PCBs in the industry and, in many cases, will require the expansion of your staff. Part 4 will explore what it takes in the area of manufacturing.
Editor’s Note: Read Part 1, Part 2 and Part 4.
Anaya Vardya is president and CEO of American Standard Circuits. Vardya is also co-author of The Printed Circuit Designer’s Guide to… Fundamentals of RF/Microwave PCBs and Flex and Rigid-Flex Fundamentals. Visit I-007eBooks.com to download these and other free, educational titles.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.