-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueIn Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
3D Additive Electronics Manufacturing: Are We Nearing an Inflection Point?
May 28, 2020 | Dan Feinberg, I-Connect007Estimated reading time: 7 minutes
Dr. Amanda Schrand
As a senior engineering group leader for the resilient additive development program at Eglin Air Force Base, Dr. Amanda Schrand spoke about the use of 3D printing for the survivability of printed hybrid electronics. As part of the Airforce Research Lab, her program also works with all branches of the military. She spoke about proof of concept and seemed to be pleased with the success of printed antennas. They use several 3D printing devices, including the nScrypt printer.
Erik Handy
Erik Handy represents SI2 Technologies, which designs, develops, and manufactures RF/microwave and sensor systems for military air, land, and sea, as well as space applications using 3D printing. SI2 uses commercially available and designs its own new materials. Erik discussed considerations for selecting printable materials. Regarding electrical conductor materials, for example, to maximize conductivity for high power handling while minimizing surface roughness for RF efficiency, dielectrics must minimize the loss tangent and provide a dielectric constant.
Erik also spoke about the challenges associated with co-printing dissimilar materials such as processing temperature mismatches, layer to layer adhesion, and more. Then, he gave examples of applications for printed RF systems.
Curtis Hill
Curtis Hill works at NASA’s Marshall Space Flight Center in Huntsville, where one area of focus is using 3D printing in space manufacturing—both on the ISS and “beyond,” with “beyond” referring to inhabiting the moon and, by 2035, Mars. He spoke about the development of flexible sensors that can monitor astronaut health using 3D additive electronics. NASA is also developing the ability to print various metals and its own inks.
Dr. Mark Mirotznik
A professor of electrical and computer engineering at the University of Delaware, Dr. Mark Mirotznik discussed the progress and challenges of 3D-printed electronics for RF devices and systems. He asked, “Since we have gotten so good at making circuits that are low cost and high volume, then why do we need 3D additive?”
One reason, he said, might be the need for small-volume labor-intensive devices and, of course, getting a replacement part in an area such as the ISS where it might take months to have it delivered. His team, however, is focusing on a far more interesting reason: Having the ability to make things where there is no other way to do so. Think about no longer being bound to two-dimensional circuits.
Another reason centers on the ability to use far more advanced materials, higher-conductivity inks, printable thermoplastics, and pastes with a range of electric and magnetic properties. Soon, 3D-printed circuits will enable capabilities that today’s standard circuit fabrication just cannot do. Mark discussed the ability of 3D printing to generate “smart munitions”—ammunition with built-in sensors—as well as other interesting topics.
Dr. Paul Parsons
Dr. Paul Parsons, director of materials research at DeLUX Advanced Manufacturing, was the final speaker. He also works with the University of Delaware on the strength of 3D-printed electronics for RF applications. To begin, he noted that until recently, 3D printing of electronics had been dominated by single material systems, which require parts to move and then deposit dissimilar materials such as dielectrics and conductors. This makes it difficult to incorporate internal features.
However, the emergence of multilateral systems enables the fabrication of complex printed circuit or RF structures within a single system. Dr. Parsons turned his focus to the various types of 3D-printed circuits, which can greatly increase functionality. He noted that being able to produce and seamlessly integrate the connectors into the circuit allows for more complicated RF structures, and then he concluded that it’s critical for the future needs to have materials development.
Conclusion
The webinar concluded with a detailed and interesting Q&A session, and I left with a strong feeling that 3D-printed electronic manufacturing not only has advanced significantly in the past few years, but the rate of advance is increasing exponentially.
These presentations were so loaded with information on both present and future uses of 3D additive circuit and device production, and all I can do here is give you a few highlights. The entire webinar is about two hours and can be viewed online [1].
Also, I have recently seen some companies announce other advances in both equipment and consumables, so I look forward to covering this topic in even greater detail.
Reference
- “The Strength of 3D-Printed Electronics,” nScrypt Inc.
Suggested Items
BEST Inc. Introduces StikNPeel Rework Stencil for Fast, Simple and Reliable Solder Paste Printing
06/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and products is pleased to introduce StikNPeel™ rework stencils. This innovative product is designed for printing solder paste for placement of gull wing devices such as quad flat packs (QFPs) or bottom terminated components.
See TopLine’s Next Gen Braided Solder Column Technology at SPACE TECH EXPO 2025
05/28/2025 | TopLineAerospace and Defense applications in demanding environments have a solution now in TopLine’s Braided Solder Columns, which can withstand the rigors of deep space cold and cryogenic environments.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
E-tronix Announces Upcoming Webinar with ELMOTEC: Optimizing Soldering Quality and Efficiency with Robotic Automation
05/30/2025 | E-tronixE-tronix, a Stromberg Company, is excited to host an informative webinar presented by Raphael Luchs, CEO of ELMOTEC, titled "Optimize Soldering Quality and Efficiency with Robotic Automation," taking place on Wednesday, June 4, 2025 at 12:00 PM CDT.
CE3S Launches EcoClaim Solutions to Simplify Recycling and Promote Sustainable Manufacturing
05/29/2025 | CE3SCumberland Electronics Strategic Supply Solutions (CE3S), your strategic sourcing, professional solutions and distribution partner, is proud to announce the official launch of EcoClaim™ Solutions, a comprehensive recycling program designed to make responsible disposal of materials easier, more efficient, and more accessible for manufacturers.