Optical Microcomb Device May Result in Improved Telecommunications, Sensors, Clocks
June 19, 2020 | CaltechEstimated reading time: 2 minutes

Modern communications technology increasingly relies on light to transmit data over fiber optics. And the high data rates that fuel the internet are achieved using many frequencies (colors) of light, each carrying a portion of data. The more colors, the more information that can be carried.
A team of researchers from Caltech, UC Santa Barbara, and the Swiss Federal Institute of Technology Lausanne (EPFL) have developed a new device that will lead to improved optical data transmission and could have applications ranging from communications to the miniaturization of time standards or to the search for exoplanets.
Their device converts laser light of a single frequency into an evenly spaced set of many distinct frequencies (a comb of frequencies). The resulting optical frequency microcomb is built from a single piece of silicon, in much the same way as computer chips. And its many colors can replace many separate lasers for data transmission.
For example, more than 50 separate lasers are sometimes required to generate the light signal on a single strand of optical fiber. "Using 50 lasers has a number of drawbacks," says UC Santa Barbara professor John Bowers, who led the research effort. "It's expensive, and rather inefficient in terms of power."
The optical microcomb is simpler and much smaller than a collection of individual lasers, and it is both less expensive to manufacture and uses less power.
The new device is also much easier to operate. Previously, microcombs required complex control of the input laser light frequency and power in order to activate the comb.
"The new approach makes the process as easy as switching on a room light," says co-author Kerry Vahala (BS '80, MS '81, PhD '85), Caltech's Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics and executive officer for Applied Physics and Materials Science. This is possible because the researchers discovered a new physical operating point (a combination of power and frequency) for the combined laser and microcomb system. "The operating point eliminates additional instruments normally required to activate and control a microcomb," adds Boqiang Shen (MS '18), co-author and Caltech applied physics graduate student.
The team took advantage of the simplified operation and the chip-scale nature of the microcomb to create a match-box sized multi-frequency optical source. Other applications of the source outside of communications are also being studied by the team.
The paper describing the new technology, titled, "Integrated turnkey soliton microcombs," appears in the June 18 issue of Nature. In addition to Vahala and Shen, other co-authors from Caltech are graduate students Boqiang Shen, Heming Wang, and Lue Wu; postdoctoral scholar Qi-Fan Yang (MS '16, PhD '19); and incoming graduate student Qing-Xin Ji. Other co-authors are Lin Chang, Chao Xiang, Weiqiang Xie, Joel Guo, David Kinghorn, and John Bowers of UC Santa Barbara; and Junqiu Liu, Rui Ning Wang, Jijun He, Tianyi Liu, and Tobias J. Kippenberg (MS '00, PHD '04) of the Swiss Federal Institute of Technology Lausanne.
Funding for the research was provided by the Defense Advanced Research Projects Agency. Read the original article here.
Suggested Items
Jabil Announces Appointment of New Director to the Board
04/21/2025 | Jabil Inc.Jabil Inc., a global engineering, supply chain, and manufacturing solutions provider, announced that Sujatha Chandrasekaran has been appointed to its Board of Directors.
NASA Aims to Fly First Quantum Sensor for Gravity Measurements
04/18/2025 | NASAA lumpy, colorful 3D model of the Earth against a black background, illustrating variations in gravity. North and South America are visible. Red areas show higher gravity, blue areas show lower gravity.
Hanon Systems Wins Third PACE Award for Visible-Light LED Photocatalyst Technology
04/18/2025 | PRNewswireHanon Systems, a leading global automotive thermal management supplier and subsidiary of Hankook & Company Group, has been named a winner of the 2025 PACE Awards. This marks the company's third win, making it the first Korean supplier to achieve this recognition.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.