-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Materials for Automotive Applications: Thermal Management Issues
July 2, 2020 | Pete Starkey, I-Connect007Estimated reading time: 7 minutes
For me, the highlight of the recent HDP User Group Automotive Technology Webinar was Alun Morgan’s presentation on materials for automotive applications. Introduced by HDPUG marketing director Larry Marcanti and moderated by TechSearch International President Jan Vardeman, this forward-looking informational session covered the latest developments in automotive standards and automotive electronic packaging, with expert speakers from ZVEI, Infineon, UL, and TTM.
Morgan, technology ambassador for Ventec International Group and president of EIPC, reflected on the evolution of electronics in vehicles since the first introduction of the valve radio in the early 1930s and its rapid advancement over the last two decades. In the year 2000, it was estimated that 18% of the value of the car lay in its electronics. At present, the figure is 40% and heading toward 50%—a massive change in the configuration of the vehicle and an illustration of the significance of its electronic systems. Besides their essential functionality, most of these systems were potential hotspots requiring thermal management. “A vehicle is effectively a power device.” Automotive lighting was the particularly critical area on which he chose to focus his discussion.
LED lighting technology was no longer confined to premium vehicles. It was becoming universal, even for headlights where the high production costs that had previously been a barrier were becoming outweighed by benefits. Compared with halogen and xenon lighting, LEDs offered brighter light with lower energy consumption and a lifetime longer than the vehicle itself so that they could be considered permanent elements of the design rather than consumable components.
Reviewing the history of LED development, Morgan referred to Haitz's law, the LED counterpart to Moore’s law. In 2000, Dr. Roland Haitz forecasted that for a given wavelength of light, for every decade, the cost per lumen would fall by a factor of 10, and the amount of light generated per LED package would increase by a factor of 20. In the 18 years since 2002, efficiency has increased eight-fold, cost per lumen has fallen by a factor of more than 100, and expected lifetime has increased to more than 100,000 hours, which represented 12 years of continuous use—effectively outlasting the useful life of the car and reducing the need for switches and connectors.
But notwithstanding the efficiency with which LEDs could convert electrical power to light, the fact remained that a large proportion of their electrical power input was output as heat. The management of that heat was critical in determining both the life expectancy and the quality of light emitted. Morgan demonstrated the dependence of light output and colour on the junction temperature of the LED before explaining the science behind the thermal management of electronic devices with a lesson in the basics of thermodynamics—the branch of physics concerned with the relationships between heat and other forms of energy.
Thankfully, he didn’t delve too deeply into the mathematics. He used straightforward, practical examples to illustrate the main points. The first law stated that in a closed system, energy could neither be created nor destroyed; it could only be converted into different forms. The second law was that heat would always flow from a region of high temperature to one of lower temperature.
Morgan introduced the concept of entropy—everything going from an ordered state to a less-ordered state, and the entropy of a system increases with time. He used a teenager’s bedroom as one example and even predicted the heat-death of the universe, although that was not likely to happen until very many years from now.
The third law stated that the entropy of a system approached a constant value as the temperature approached absolute zero. An additional or “zeroth” law stated that if two thermodynamic systems were each in thermal equilibrium with a third one, then they were in thermal equilibrium with each other. The second law was the key to thermal management—order always going to disorder, with no way back.
Thermal transfer could be accomplished by three principal mechanisms: radiation, conduction, and convection. Morgan’s example of all three was a saucepan being held above an electric hotplate. The hotplate radiated heat towards the pan; the handle conducted heat toward the hand, and convection moved heat within the fluid. In the electronics context, the primary mechanism was thermal conduction.
The conventional method of managing the heat emitted by LEDs was to use a discrete heat sink coupled to the device with a thermal interface material. His example showed equivalent thermal resistors in series, representing individual values for components, substrate technologies, and cooling systems. But there had been major developments in materials designed for removing heat: metal-in-board constructions, insulated metal substrates, thermally conductive prepregs, and thermally conductive coatings.
Themally conductive PCBs were extensively used to keep heat-generating components cooler and reduce system costs. In Morgan’s example, an insulated metal substrate (IMS) offered a cost-effective alternative to conventional methods by simplifying designs, reducing weight, eliminating the need for thermal interface materials, and using standard PCB manufacturing techniques.
In terms of thermal dissipation, whereas standard FR-4 laminate had a typical value of 0.25 watts per metre Kelvin (W/mK), glass-reinforced IMS laminates were available with values between 1 W/mK and 3 W/mK, and non-reinforced IMS laminates with values of 3W/mK to 8W/mK and higher. These were bendable and capable of being mechanically formed. Morgan explained the structure of an insulated metal substrate: a metal base layer of aluminium or copper, a dielectric layer, and a copper foil layer capable of being photoimaged and etched to form a circuit. A current innovation was a coating for the aluminium base layer, which helped in distributing the heat uniformly and also improved its emissivity—a measure of how well a surface would radiate or emit heat.
Back to thermodynamics—“A fun topic but full of maths”—Morgan gave an impressive demonstration of his technical numeracy in deriving equations for convective and radiative heat transfer in terms of the coefficient of heat transfer of the process, the temperature differential, the Stefan-Boltzmann constant, and the emissivity. He described how a change in emissivity could make a substantial difference to the performance of an IMS system and showed that Ventec’s newly developed surface coating could double the amount of heat removed compared to uncoated aluminium.Page 1 of 2
Suggested Items
Indium Technical Expert to Present at SiP Conference China
11/25/2024 | Indium CorporationIndium Corporation Senior Area Technical Manager for East China Leo Hu is scheduled to deliver a presentation on Low-Temperature Solder Material in Semiconductor Packaging Applications at SiP China Conference 2024 on November 27 in Suzhou, China.
Indium Corporation to Showcase Precision Gold Solder Solutions at MEDevice Silicon Valley 2024
11/18/2024 | Indium CorporationIndium Corporation® will feature its high-reliability AuLTRA® MediPro gold solder solutions at MEDevice Silicon Valley, taking place on November 20-21 in Silicon Valley, California. AuLTRA® MediPro is a family of high-performance, precision gold solder solutions for critical medical applications.
AIM to Highlight NC259FPA Ultrafine No Clean Solder Paste at SMTA Silicon Valley Expo & Tech Forum
11/14/2024 | AIMAIM Solder, a leading global manufacturer of solder assembly materials for the electronics industry, is pleased to announce its participation in the upcoming SMTA Silicon Valley Expo & Tech Forum taking place on December 5 at the Fremont Marriott Silicon Valley in Fremont, California.
Data-driven Precision in PCBA Manufacturing
11/13/2024 | Julie Cliche-Dubois, CogiscanThe intricacies involved in electronics manufacturing require more than just expensive equipment and skilled technicians; they necessitate an accurate understanding of the entire production flow, informed and driven by access and visibility to reliable data.
Rehm Thermal Systems Mexico Wins the Mexico Technology Award 2024 in the Category Convection Soldering
11/13/2024 | Rehm Thermal SystemsRehm Thermal Systems Mexico has won the Mexico Technology Award in the category convection soldering with the patented mechatronic curtain for convection soldering systems.