Lightmatter’s Optical Processor to Speed Compute for Next-Generation AI
August 17, 2020 | Business WireEstimated reading time: 1 minute
Lightmatter, a leader in silicon photonics processors, announces its artificial intelligence (AI) photonic processor, a general-purpose AI inference accelerator that uses light to compute and transport data. Using light to calculate and communicate within the chip reduces heat—leading to orders of magnitude reduction in energy consumption per chip and dramatic improvements in processor speed.
Since 2010, the amount of compute power needed to train a state-of-the-art AI algorithm has grown at five times the rate of Moore’s Law scaling—doubling approximately every three and a half months. Lightmatter’s processor solves the growing need for computation to support next-generation AI algorithms.
“The Department of Energy estimates that by 2030, computing and communications technology will consume more than 8 percent of the world’s power. Transistors, the workhorse of traditional processors, aren’t improving; they’re simply too hot. Building larger and larger datacenters is a dead end path along the road of computational progress,” said Nicholas Harris, PhD, founder and CEO at Lightmatter. “We need a new computing paradigm. Lightmatter’s optical processors are dramatically faster and more energy efficient than traditional processors. We’re simultaneously enabling the growth of computing and reducing its impact on our planet.”
On August 18th, Lightmatter’s VP of Engineering, Carl Ramey, will present their photonic processor architecture at HotChips32. The 3D-stacked chip package contains over a billion FinFET transistors, tens of thousands of photonic arithmetic units, and hundreds of record-setting data converters. Lightmatter’s photonic processor runs standard machine learning frameworks including PyTorch and TensorFlow, enabling state-of-the-art AI algorithms.
This new architecture is a massive advancement in the development of photonic processors. The performance of this photonic processor provides proof that Lightmatter’s approach to processor design delivers scalable speed and energy efficiency advantages over the current electronic compute paradigm and is the starting point for a roadmap of chips with dramatic performance improvements.
Suggested Items
Hitachi Energy Boosts Pennsylvania Investments to Over $70 million to Meet Surging Demand for Sustainable Grid Infrastructure
04/21/2025 | Hitachi EnergyHitachi Energy announced that it has increased its investments to more than $70 million USD in Pennsylvania. Originally announced in 2024 as part of a $155 million nationwide investment in U.S. manufacturing capacity.
IEEE Study Leverages Silicon Photonics for Scalable and Sustainable AI Hardware
04/14/2025 | PRNewswireThe emergence of AI has profoundly transformed numerous industries. Driven by deep learning technology and Big Data, AI requires significant processing power for training its models. While the existing AI infrastructure relies on graphical processing units (GPUs), the substantial processing demands and energy expenses associated with its operation remain key challenges.
Dongguk University Researchers Advance Lithium-Ion Battery Technology with Hybrid Anode Material
04/14/2025 | PRNewswireResearchers from Dongguk University have achieved a significant breakthrough in lithium-ion battery technology by developing a novel hybrid anode material.
Foxconn Joins Hands with 30 Suppliers to Reduce Carbon Emissions by 15,000 Tons in Two Years
04/09/2025 | FoxconnHon Hai Technology Group, the world’s largest technology manufacturer and service provider, has participated in climate actions such as CA100+ and RE100 in recent years and pledged to achieve net zero emissions by 2050.
LiU and Siemens Energy Enter Into Strategic Partnership
04/01/2025 | Linköping UniversityIn order to find long-term solutions to future challenges in the energy field, Linköping University and Siemens Energy AB sign a strategic partnership agreement.