3D Print Experts Using Ink-jet Printed Graphene
November 4, 2020 | University of NottinghamEstimated reading time: 2 minutes

The University of Nottingham has cracked the conundrum of how to use inks to 3D-print novel electronic devices with useful properties, such as an ability to convert light into electricity.
The study shows that it is possible to jet inks, containing tiny flakes of 2D materials such as graphene, to build up and mesh together the different layers of these complex, customised structures.
Using quantum mechanical modelling, the researchers also pinpointed how electrons move through the 2D material layers, to completely understand how the ground-breaking devices can be modified in future.
The study, ‘Inter?Flake Quantum Transport of Electrons and Holes in Inkjet?Printed Graphene Devices’, has been published in the peer-reviewed journal Advanced Functional Materials.
Often described as a ‘super material’, graphene was first created in 2004. It exhibits many unique properties including being stronger than steel, highly flexible and the best conductor of electricity ever made.
Two-dimensional materials like graphene are usually made by sequentially exfoliating a single layer of carbon atoms – arranged in a flat sheet - which are then used to produce bespoke structures.
However, producing layers and combining them to make complex, sandwich-like materials has been difficult and usually required painstaking deposition of the layers one at a time and by hand.
Since its discovery, there has been an exponential growth in the number of patents involving graphene. However, in order to fully exploit its potential, scalable manufacturing techniques need to be developed.
The new paper shows that additive manufacturing - more commonly known as 3D printing - using inks, in which tiny flakes of graphene (a few billionths of a metre across) are suspended, provides a promising solution.
By combining advanced manufacturing techniques to make devices along with sophisticated ways of measuring their properties and quantum wave modelling the team worked out exactly how inkjet?printed graphene can successfully replace single layer graphene as a contact material for 2D metal semiconductors.
The study was carried out by engineers at the Centre for Additive Manufacturing and physicists at the School of Physics and Astronomy with a common interest in quantum technologies, under the £5.85m EPSRC-funded Programme Grant, Enabling Next Generation Additive Manufacturing.
The researchers used a wide range of characterisation techniques - including micro?Raman spectroscopy (laser scanning), thermal gravity analysis, a novel 3D orbiSIMS instrument and electrical measurements - to provide detailed structural and functional understanding of inkjet?printed graphene polymers, and the effects of heat treating (annealing) on performance.
The next steps for the research are to better control the deposition of the flakes by using polymers to influence the way they arrange and align and trying different inks with a range of flake sizes. The researchers also hope to develop more sophisticated computer simulations of the materials and the way they work together, developing ways of mass-manufacturing they devices they prototype.
The University of Nottingham is a research-intensive university with a proud heritage, consistently ranked among the world's top 100. Studying at the University of Nottingham is a life-changing experience and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement.
Read the original article here.
Suggested Items
IPC President’s Award: Xaver Feiner
04/17/2025 | Nolan Johnson, SMT007 MagazineThroughout his career, Xaver Feiner, vice president of marketing and sales at Zollner Elektronik, has developed extensive expertise in account management and new business development with a strong focus on the semiconductor industry, aerospace, and industrial electronics. Xaver has cultivated a profound understanding of global markets and remains deeply engaged with the challenges and opportunities presented by digital transformation. Since 2020, he has been an active member of the IPC Europe Advocacy Group, where he is dedicated to advancing the position of the electronics industry and the EMS sector across Europe.
Safran Inaugurates Advanced Manufacturing and Engineering Hub in Colorado to Propel Innovation in Satellite Propulsion
04/17/2025 | PRNewswireJoe Bogosian, CEO of Safran Defense & Space, Inc. (Safran DSI), and Pier Roviera, President of Space Solutions at Safran DSI, inaugurated the company's new manufacturing facility in Parker, Colorado, on April 11.
IPC APEX EXPO 2025 Review: The New Normal Looks Like the Old Normal
04/16/2025 | Nolan Johnson, SMT007 MagazineAt IPC APEX EXPO, my days are filled with either talking or listening from sunup to sundown. I get to answer questions of some of the brightest minds in the business, while also listening and synthesizing what they’re sharing with me about the current and future state of the industry. Here are five observations based on the conversations.
INEMI Announces Board of Directors Election Results
04/16/2025 | iNEMIThe International Electronics Manufacturing Initiative (INEMI) has announced results from its recent Board of Directors election. The consortium’s members have added one new director and re-elected four incumbents.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.