Researchers to Redesign Microprocessors to Increase Computing Power
December 11, 2020 | Pennsylvania State UniversityEstimated reading time: 2 minutes
Increasing computing power is critical for many technological developments. However, the traditional method of increasing computing power—namely, adding more transistors to microprocessors—is reaching its limit of physical scaling. With a three-year, $500,000 grant from the National Science Foundation, researchers led by Vijaykrishnan Narayanan, A. Robert Noll Chair of Electrical Engineering and Computer Science at Penn State, are exploring new methods of improving computing power in microprocessors.
A microprocessor is a central processing unit made of transistors, the switches that change electrical signals. In order to improve computing power, scientists pack more transistors into a single microprocessor by making the transistors smaller. However, transistors are becoming as small as physically possible, according to Narayanan. To improve microprocessors and their computing power, scientists have to build the microprocessors differently — more specifically, they have to build up.
“There used to be only one layer of transistors because of fabrication challenges, but now we are looking at multiple layers of these transistors stacked upon each other,” Narayanan said. “Think about making a stack of pancakes. The pancakes can be made separately and stacked on top of each other, and that is what is being done now. But with the notion of microprocessor technology, when you stack things, it’s not enough that you stack; the stacks need to communicate with each other.”
In order to increase communication between the layers, which is important for the speed of processing, the layers cannot be premade and then stacked. Instead, they must be created as they are being layered. However, creating the layers as they are being stacked means that the top layers behave differently from the bottom layers, requiring new design strategies.
“We’re aware that the performance of the different layers is slightly different, so how do you make a more powerful processor with this?” Narayanan said. “What I’m looking at, within the boundaries of these limitations, is how well are we able to allocate the design to different layers. What needs to be at the top layer, if I move things there, how should I design them to enhance power, performance, robustness?”
The ultimate goal of the research, Narayan said, is to explore the types of opportunities that come into play when the microprocessors have another dimension that simultaneously allows for greater connectivity between the layers.
“When we can do these types of things, we’ll have the ability to integrate different technologies together as a single chip,” Narayanan said. “We can tightly integrate non-volatile memory that can retain data with logic, even if the power goes away. Think of turning on your phone and everything comes back instantly. With a lot of fine grain connectivity, we’ll be almost instantaneously backing up everything. The impact on high-performance processors would be significant as well.
Narayanan will continue to leverage ongoing external collaborations with other researchers, including Suman Datta, Stinson Professor of Nanotechnology at the University of Notre?Dame, and Meng-Fan Chang, professor at National Tsing Hua University in Taiwan. The new project grew out of work conducted with a grant from the Center for Research on Intelligent Storage and Processing-in-memory, of the Joint University Microelectronics Program in the Semiconductor Research Corporation.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
Q2 Client CPU Shipments Increased 8% from Last Quarter, Up 13% YoY
08/13/2025 | Jon Peddie ResearchJon Peddie Research reports that the global client CPU market expanded for two quarters in a row, and in Q2’25, it showed unseasonal growth of 7.9% from last quarter, while server CPU shipments increased 22% year over year.
FuriosaAI Closes $125M Investment Round to Scale Production of Next-Gen AI Inference Chip
07/31/2025 | BUSINESS WIREFuriosaAI, a semiconductor company building a new foundation for AI compute, today announced it has completed a $125 million Series C bridge funding round. The investment continues a period of significant momentum for Furiosa as global demand for high-performance, efficient AI infrastructure soars.
Siemens, PTC, and Dassault Systèmes Named Leaders in ABI Research's PLM Assessment for Large Discrete Manufacturers
07/28/2025 | PRNewswireThe Product Lifecycle Management (PLM) market has witnessed significant developments over the past year with the rise of Software-as-a-Service (SaaS), digital twins, and Generative AI (Gen AI) becoming integral for large discrete manufacturers.
TRI to Exhibit at SMTA Queretaro Expo 2025
07/16/2025 | TRITest Research, Inc. (TRI), the leading provider of test and inspection systems for the electronics manufacturing industry, is pleased to announce plans to exhibit at the SMTA Querétaro Expo 2025, scheduled to take place on July 24, 2025, at the Querétaro Centro de Congresos y Teatro Metropolitano.