Scientists Propose New Way to Detect Emotions Using Wireless Signals
February 4, 2021 | Queen Mary University of LondonEstimated reading time: 4 minutes
A novel artificial intelligence (AI) approach based on wireless signals could help to reveal our inner emotions, according to new research from Queen Mary University of London.
The study, published in the journal PLOS ONE, demonstrates the use of radio waves to measure heartrate and breathing signals and predict how someone is feeling even in the absence of any other visual cues, such as facial expressions.
Participants were initially asked to watch a video selected by researchers for its ability to evoke one of four basic emotion types; anger, sadness, joy and pleasure. Whilst the individual was watching the video the researchers then emitted harmless radio signals, like those transmitted from any wireless system including radar or WiFi, towards the individual and measured the signals that bounced back off them.
By analysing changes to these signals caused by slight body movements, the researchers were able to reveal information about an individual’s heart and breathing rates.
Deep Learning Approaches
Previous research has used similar non-invasive or wireless methods of emotion detection, however in these studies data analysis has depended on the use of classical machine learning approaches, whereby an algorithm is used to identify and classify emotional states within the data.
For this study the scientists instead employed deep learning techniques, where an artificial neural network learns its own features from time-dependent raw data, and showed that this approach could detect emotions more accurately than traditional machine learning methods.
Achintha Avin Ihalage, a PhD student at Queen Mary, said: “Deep learning allows us to assess data in a similar way to how a human brain would work looking at different layers of information and making connections between them. Most of the published literature that uses machine learning measures emotions in a subject-dependent way, recording a signal from a specific individual and using this to predict their emotion at a later stage.
“With deep learning we’ve shown we can accurately measure emotions in a subject-independent way, where we can look at a whole collection of signals from different individuals and learn from this data and use it to predict the emotions of people outside of our training database.”
Detecting Emotions
Traditionally, emotion detection has relied on the assessment of visible signals such as facial expressions, speech, body gestures or eye movements. However, these methods can be unreliable as they do not effectively capture an individual’s internal emotions and researchers are increasingly looking towards ‘invisible’ signals, such as ECG to understand emotions.
ECG signals detect electrical activity in the heart, providing a link between the nervous system and heart rhythm. However the measurement of these signals has largely been performed using sensors that are placed on the body and recently researchers have been looking towards non-invasive approaches that use radio waves to detect emotions instead.
Wider Implications
Methods to detect human emotions are often used by researchers involved in psychological or neuroscientific studies but it is thought that these approaches could also have wider implications for the management of health and wellbeing.
Ahsan Noor Khan, a PhD student at Queen Mary and first author of the study, said: “Being able to detect emotions using wireless systems is a topic of increasing interest for researchers as it offers an alternative to bulky sensors and could be directly applicable in future ‘smart’ home and building environments. In this study, we’ve built on existing work using radio waves to detect emotions and show that the use of deep learning techniques can improve the accuracy of our results.”
“We’re now looking to investigate how we could use low-cost existing systems, such as WiFi routers, to detect emotions of a large number of people gathered, for instance in an office or work environment. This type of approach would enable us to classify emotions of people on individual basis while performing routine activities. Moreover, we aim to improve the accuracy of emotion detection in a work environment using advanced deep learning techniques.”
Professor Yang Hao, Professor of Antennas and Electromagnetics at Queen Mary and the project lead, said: “This research opens up many opportunities for practical applications, especially in areas such as human/robot interaction and healthcare and emotional wellbeing, which has become increasingly important during the current Covid-19 pandemic.”
Whilst this study shows this approach can be used to detect emotions any large-scale deployment would need to consider other social and ethical concerns, including data protection. Professor Yang Hao, added: "In the past, similar approaches have been used for identifying human physiological data, which has been widely used in body-centric wireless communications and wearable/implantable sensors for healthcare monitoring. Having a secured network to protect users’ privacy is essential, just like many other wireless technologies."
In the future, the research team plan to work with healthcare professionals and social scientists on public acceptance and ethical concerns around the use of this technology.
Suggested Items
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
Smart Automation: The Power of Data Integration in Electronics Manufacturing
06/24/2025 | Josh Casper -- Column: Smart AutomationAs EMS companies adopt automation, machine data collection and integration are among the biggest challenges. It’s now commonplace for equipment to collect and output vast amounts of data, sometimes more than a manufacturer knows what to do with. While many OEM equipment vendors offer full-line solutions, most EMS companies still take a vendor-agnostic approach, selecting the equipment companies that best serve their needs rather than a single-vendor solution.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.
Priority Software Announces the New, Game-Changing aiERP
06/12/2025 | Priority SoftwarePriority Software Ltd., a leading global provider of ERP and business management software announces its revolutionary aiERP, leveraging the power of AI to transform business operations.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.