L3Harris Technologies to Design Long-Endurance Autonomous Surface Ship Concept for U.S. DARPA
March 5, 2021 | Business WireEstimated reading time: 1 minute

L3Harris Technologies has been selected to design an autonomous surface ship concept for the U.S. Defense Advanced Research Projects Agency (DARPA) to demonstrate the reliability and feasibility of an unmanned ship performing lengthy missions.
L3Harris was chosen for phase one of the two-phase No Manning Required Ship (NOMARS) program. The L3Harris design concept will streamline NOMARS’ construction, logistics, operations and maintenance life-cycle. The company teamed with VARD Marine to validate the concept and design of the architecture and hull, mechanical and electrical systems.
The L3Harris design features an advanced operating system that can make decisions and determine actions on its own – without direct human interaction. This concept optimizes autonomous surface ship operations to support the U.S. Navy’s future missions.
“L3Harris continues to pioneer innovative autonomous solutions that offer fully automated and integrated ship control and preventative maintenance systems to the U.S. Navy and its allies,” said Sean Stackley, President, Integrated Mission Systems, L3Harris. “The NOMARS program selection reinforces our commitment to deliver highly reliable and affordable autonomous solutions that transform the way the U.S. Navy conducts its future missions.”
L3Harris is a world leader in Unmanned Surface Vehicle (USV) systems, with over 125 USVs and optionally manned vehicles delivered. The company’s USVs are actively serving U.S and international navies, universities, research institutions and commercial businesses.
Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Meet the Author Podcast: Martyn Gaudion Unpacks the Secrets of High-Speed PCB Design
07/10/2025 | I-Connect007In this special Meet the Author episode of the On the Line with… podcast, Nolan Johnson sits down with Martyn Gaudion, signal integrity expert, managing director of Polar Instruments, and three-time author in I-Connect007’s popular The Printed Circuit Designer’s Guide to... series.
Showing Some Constraint: Design007 Magazine July 2025
07/10/2025 | I-Connect007 Editorial TeamA robust design constraint strategy balances dozens of electrical and manufacturing trade-offs. This month, we focus on design constraints—the requirements, challenges, and best practices for setting up the right constraint strategy.
Elementary, Mr. Watson: Rein in Your Design Constraints
07/10/2025 | John Watson -- Column: Elementary, Mr. WatsonI remember the long hours spent at the light table, carefully laying down black tape to shape each trace, cutting and aligning pads with surgical precision on sheets of Mylar. I often went home with nicks on my fingers from the X-Acto knives and bits of tape all over me. It was as much an art form as it was an engineering task—tactile and methodical, requiring the patience of a sculptor. A lot has changed in PCB design over the years.
TTCI Joins Printed Circuit Engineering Association to Strengthen Design-to-Test Collaboration and Workforce Development
07/09/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to announce its membership in the Printed Circuit Engineering Association (PCEA), further expanding the company’s efforts to support cross-functional collaboration, industry standards, and technical education in the printed circuit design and manufacturing community.