Intel, DARPA Develop Secure Structured ASIC Chips Made in the US
March 22, 2021 | IntelEstimated reading time: 2 minutes
Intel and the U.S. Defense Advanced Research Projects Agency (DARPA) today announced a three-year partnership to advance the development of domestically manufactured structured Application Specific Integrated Circuit (ASIC) platforms. The Structured Array Hardware for Automatically Realized Applications (SAHARA) partnership enables the design of custom chips that include state-of-the-art security countermeasure technologies. A reliable, secure, domestic source of leading-edge semiconductors remains critical to the U.S.
“We are combining our most advanced Intel® eASIC structured ASIC technology with state-of-the-art data interface chiplets and enhanced security protection, and it’s all being made within the U.S. from beginning to end. This will enable defense and commercial electronics systems developers to rapidly develop and deploy custom chips based on Intel’s advanced 10nm semiconductor process,” says José Roberto Alvarez, senior director, CTO Office, Intel Programmable Solutions Group.
As the sole U.S.-based advanced semiconductor manufacturer, Intel promotes supply-chain security by utilizing facilities within the U.S. to manufacture, assemble and test custom chips for the SAHARA partnership.
“Structured ASICs have advantages over FPGAs that are widely used in many Department of Defense applications. In partnering with Intel on the SAHARA program, DARPA aims to transform currently fielded as well as future capabilities into structured ASIC implementations with significantly higher performance and lower power consumption,” said Serge Leef, a program manager in DARPA’s Microsystems Technology Office. “SAHARA aims to dramatically shorten the ASIC design process through automation while adding unique security features to support manufacturing of the resulting silicon in zero-trust environments. Additionally, Intel will establish domestic manufacturing capabilities for the structured ASICs on their 10nm process.”
In collaboration with the University of Florida, Texas A&M and University of Maryland, Intel will develop security countermeasure technologies that enhance protection of data and intellectual property from reverse engineering and counterfeiting. University teams will use rigorous verification, validation and new attack strategies to test the security of these chips. The security countermeasure technologies will be integrated into Intel’s structured ASIC design flow.
Intel will use its structured ASIC technology to develop platforms that significantly accelerate development time and reduce engineering cost compared to traditional ASICs. Intel will manufacture these chips using its 10nm process technology with the advanced interface bus die-to-die interconnect and embedded multi-die interconnect bridge packaging technology to integrate multiple heterogenous die in a single package.
Intel® eASIC™ devices are structured ASICs, an intermediary technology between field-programmable gate arrays (FPGAs) and standard-cell ASICs. These devices provide lower unit-cost and run on lower power compared with FPGAs and provide a faster time to market and lower non-recurring engineering cost compared with standard-cell ASICs.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.