New Approach Brings Industry a Step Closer to Transparent Electronics
April 8, 2021 | FleetEstimated reading time: 3 minutes
A new study could pave the way to revolutionary, transparent electronics.
Such see-through devices could potentially be integrated in glass, in flexible displays and in smart contact lenses, bringing to life futuristic devices that seem like the product of science fiction.
For several decades, researchers have sought a new class of electronics based on semiconducting oxides, whose optical transparency could enable these fully-transparent electronics.
Oxide-based devices could also find use in power electronics and communication technology, reducing the carbon footprint of our utility networks.
A RMIT-led team has now introduced ultrathin beta-tellurite to the two-dimensional (2D) semiconducting material family, providing an answer to this decades-long search for a high mobility p-type oxide.
“This new, high-mobility p-type oxide fills a crucial gap in the materials spectrum to enable fast, transparent circuits,” says team leader Dr Torben Daeneke, who led the collaboration across three FLEET nodes.
Other key advantages of the long-sought-after oxide-based semiconductors are their stability in air, less-stringent purity requirements, low costs and easy deposition.
“In our advance, the missing link was finding the right, ‘positive’ approach,” says Torben.
Positivity Has Been Lacking
There are two types of semiconducting materials. ‘N-type’ materials have abundant negatively-charged electrons, while ‘p-type’ semiconductors possess plenty of positively-charged holes.
It’s the stacking together of complementary n-type and p-type materials that allows electronic devices such as diodes, rectifiers and logic circuits.
Modern life is critically reliant on these materials since they are the building blocks of every computer and smartphone.
A barrier to oxide devices has been that while many high-performance n-type oxides are known, there is a significant lack of high-quality p-type oxides.
Theory Prompts Action
However in 2018 a computational study revealed that beta-tellurite (?-TeO2) could be an attractive p-type oxide candidate, with tellurium’s peculiar place in the periodic table meaning it can behave as both a metal and a non-metal, providing its oxide with uniquely useful properties.
“This prediction encouraged our group at RMIT University to explore its properties and applications,” says Dr Torben Daeneke, who is a FLEET associate investigator.
Liquid Metal – Pathway to Explore 2D Materials
Dr Daeneke’s team demonstrated the isolation of beta-tellurite with a specifically developed synthesis technique that relies on liquid metal chemistry.
“A molten mixture of tellurium (Te) and selenium (Se) is prepared and allowed to roll over a surface,” explains co-first author Patjaree Aukarasereenont.
“Thanks to the oxygen in ambient air, the molten droplet naturally forms a thin surface oxide layer of beta-tellurite. As the liquid droplet is rolled over the surface, this oxide layer sticks to it, depositing atomically thin oxide sheets in its way.”
“The process is similar to drawing: you use a glass rod as a pen and the liquid metal is your ink,” explains Ms Aukarasereenont, who is a FLEET PhD student at RMIT.
While the desirable ?-phase of tellurite grows below 300 °C, pure tellurium has a high melting point, above 500 °C. Therefore, selenium was added to design an alloy that has a lower melting point, making the synthesis possible.
“The ultrathin sheets we obtained are just 1.5 nanometres thick – corresponding to only few atoms. The material was highly transparent across the visible spectrum, having a bandgap of 3.7 eV which means that they are essentially invisible to the human eye” explains co-author Dr Ali Zavabeti.
Assessing Beta-Tellurite: Up to 100 Times Faster
To assess the electronic properties of the developed materials, field-effect transistors (FETs) were fabricated.
“These devices showed characteristic p-type switching as well as a high hole mobility (roughly 140 cm2V-1s-1), showing that beta-tellurite is ten to one hundred times faster than existing p-type oxide semiconductors. The excellent on/off ratio (over 106) also attests the material is suitable for power efficient, fast devices” Ms Patjaree Aukarasereenont said.
“The findings close a crucial gap in the electronic material library,” Dr Ali Zavabeti said.
“Having a fast, transparent p-type semiconductor at our disposal has the potential to revolutionise transparent electronics, while also enabling better displays and improved energy-efficient devices.”
The team plans to further explore the potential of this novel semiconductor. “Our further investigations of this exciting material will explore integration in existing and next-generation consumer electronics,” says Dr Torben Daeneke.
Read the original article, here.
Suggested Items
Rogers Announces Addition of Woon Keat Moh to Board of Directors
12/23/2024 | Rogers CorporationRogers Corporation announced that Woon Keat Moh ("Moh") has been appointed as an independent member of the Company’s Board of Directors, effective January 1, 2025. Following this change, the Board will be composed of nine members, eight of whom are independent.
The Knowledge Base: The Era of Advanced Packaging
12/23/2024 | Mike Konrad -- Column: The Knowledge BaseThe semiconductor industry is at a pivotal juncture. As the traditional scaling predicted by Moore's Law encounters significant physical and economic barriers, transistor density can no longer double every two years without escalating costs and complications. As a result, the industry is shifting its focus from chip-level advancements to innovative packaging and substrate technologies. I Invited Dr. Nava Shpaisman, strategic collaboration manager at KLA, to provide some insight.
Coherent Evaluates Strategic Alternatives for Its Advanced Lithium-Ion Battery Recycling Technology
12/13/2024 | Globe NewswireCoherent Corp., a global leader in materials, networking, and lasers, today announced that as a result of an ongoing strategic portfolio assessment, the company will evaluate strategic alternatives for its Streamlined Hydrometallurgical Advanced Recycling Process (SHARP™) technology to efficiently recover and recycle critical metals from lithium-ion batteries (LiBs).
Battery Prices Stabilize in November, Slight Increase Expected in 2025
12/12/2024 | TrendForceTrendForce’s latest research reveals that China's EV sales continued to grow throughout November 2024, driving demand for EV batteries. LFP battery prices remained stable, while prices for ternary batteries saw a slight decline.
SolderKing Celebrates a Year of Expansion, Innovation, and Sustainability Achievements
12/09/2024 | SolderKing Assembly Materials Ltd,SolderKing Assembly Materials Ltd, a leading UK-based manufacturer of soldering materials and consumables, has wrapped up 2024 with a series of milestones that reflect its ongoing growth and commitment to innovation.