Scientists Propose Novel Bilayer Structure for Crystalline Silicon Solar Cells
December 9, 2021 | Chinese Academy of SciencesEstimated reading time: 1 minute
Researchers from the Shanghai Advanced Research Institute (SARI) of the Chinese Academy of Sciences have proposed a novel "bilayer" structure composing of different transition metal oxide (TMO) thin films in crystalline silicon (c-Si) solar cells in order to improve the cells' efficiency.
The researchers combined NiOx and MoOx films into a bilayer structure that extracts "hole carriers" from c-Si more efficiently than single-layer films can. The results were published in Cell Reports Physical Science.
"Hole carriers" carry a positive charge. Together with electrons, which have opposite polarity, they were created after c-Si absorbs sun light. By extracting positive holes and negative electrons from c-Si to external circuits, the sun light is converted to usable electricity – this is what a c-Si solar cell does. "Extracting" carriers from c-Si is critical and they can be realized by carrier-selective contacts (CSCs) such as TMO films.
CSCs play an important role in improving the power conversion efficiency (PCE) of c-Si cells. Existing single-layer, thin TMO films such as MoOx or NiOx cannot effectively extract the desired carriers-mainly holes, thus leading to c-Si solar cells with mediocre efficiency.
In a NiOx/MoOx bilayer structure, however, MoOx can induce band bending at the interface, which is favorable for hole carrier extraction. Moreover, NiOx helps to block undesired electron carriers. This is confirmed by both band alignment simulation and minority carrier lifetime measurements.
Taking advantages of these features, the researchers reported a remarkable PCE of 21.31% in c-Si solar cells employing NiOx/MoOx bilayers.
Moreover, forming an additional ultra-thin SiOx layer on the silicon surface can further suppress loss pathways such as recombination, etc.
As a consequence, using an NiOx/SiOx/MoOx structure can further boost the device's PCE to 21.60%. This is the highest reported efficiency of any c-Si solar cell employing MoOx-based hole-selective contacts instead of a costly a-Si:H passivation layer, according to the researchers.
This study highlights a promising and robust approach to employing bilayers as efficient structures for extracting hole carriers. It serves as an inspiring guide for tackling challenges in the field of passivating contact c-Si solar cells.
This work was supported by the National Natural Science Foundation of China, the Natural Science Foundation of Shanghai, and the Shanxi Science and Technology Department, among others.
Suggested Items
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.
Altair, JetZero Join Forces to Propel Aerospace Innovation
03/26/2025 | AltairAltair, a global leader in computational intelligence, and JetZero, a company dedicated to developing the world’s first commercial blended wing airplane, have joined forces to drive next-generation aerospace innovation.
RTX's Raytheon Receives Follow-on Contract from U.S. Army for Advanced Defense Analysis Solution
03/25/2025 | RTXRaytheon, an RTX business, has been awarded a follow-on contract from the U.S. Army Futures Command, Futures and Concepts Center to continue to utilize its Rapid Campaign Analysis and Demonstration Environment, or RCADE, modeling and simulation capability.
Ansys to Integrate NVIDIA Omniverse
03/20/2025 | ANSYSAnsys announced it will offer advanced data processing and visualization capabilities, powered by integrations with NVIDIA Omniverse within select products, starting with Fluent and AVxcelerate Sensors.
Altair Releases Altair HyperWorks 2025
02/19/2025 | AltairAltair, a global leader in computational intelligence, is thrilled to announce the release of Altair® HyperWorks® 2025, a best-in-class design and simulation platform for solving the world's most complex engineering challenges.