Analog Devices’ RadioVerse SoC Drives 5G Radio Efficiency and Performance
December 10, 2021 | Business WireEstimated reading time: 2 minutes
Analog Devices, Inc. announced a breakthrough RadioVerse System-on-Chip (SoC) series providing radio unit (RU) developers with an agile and cost-effective platform to create the most energy efficient 5G RUs in the industry. The new SoC series provides advanced RF signal processing with expanded digital functionality and RF capacity that greatly improves 5G RU performance and energy efficiency. The SoCs are the newest addition to ADI’s RadioVerse ecosystem and combine its award-winning Zero IF (ZiF) architecture with significant advances in functional integration and linearization. ADI’s RadioVerse devices are the most widely used software-defined transceivers in 4G and 5G RUs worldwide.
“Samsung and ADI have long worked together to support the swift deployment of 5G in the global market,” said Dong Geun Lee, Vice President and Head of Hardware R&D Group, Network Business at Samsung Electronics. “We are excited for the successful launch of ADI’s new SoC, as we expect this cutting-edge technology will bring better 5G experience to consumers. We look forward to expanding our engagement with ADI.”
Demand for power efficient RUs is expanding rapidly as global network operators race to deploy 5G infrastructure. With the exponential growth of wireless demand, energy efficiency is a key metric for operators as they seek to reduce their carbon footprint while expanding network capacity. The new RadioVerse SoC series requires very low power compared to alternatives and implements advanced algorithms that deliver optimal RU system efficiency.
“RadioVerse SoCs are designed to optimize the full radio solution rather than just a single component or interface,” said Joe Barry, Vice President of Wireless Communications at Analog Devices. “Each successive generation has provided expanded capabilities, bandwidth and performance, while improving overall RU efficiency. This new RadioVerse SoC series takes a big step forward by delivering multiple advancements in signal processing to meet the demanding needs of 5G.”
The ADRV9040 is the first in the new RadioVerse SoC series. It offers eight transmit and receive channels of 400MHz bandwidth and integrates advanced digital signal processing functions, including carrier digital up-converters (CDUC), carrier digital down-converters (CDDC), crest factor reduction (CFR) and digital pre-distortion (DPD). This expanded signal processing can eliminate the need for a field-programmable gate array (FPGA), thereby reducing thermal footprint, and total system size, weight, power, and cost. The SoC’s DPD algorithms were developed using advanced machine learning techniques and are optimized in close collaboration with major power amplifier (PA) vendors to ease the design burden and deliver best-in-class wide bandwidth performance. The algorithms are fully tested and validated across 4G and 5G use cases, including various PA technology types such as gallium nitride (GaN). In addition, the ZiF radio architecture simplifies RF filtering and signal chain components, reducing RU cost and development time for band and power variants designs.
Suggested Items
High-frequency EMC Noise in DC Circuits
05/29/2025 | Karen Burnham, EMC UnitedEMC isn’t black magic, but it’s easy to understand why it seems that way. When looking at a schematic like that in Figure 1, it looks like you’re only dealing with DC signals all across the board. There’s a 28 VDC input that goes through an EMI filter, then gets converted to 12 VDC power. Except in extremely rare circumstances involving equipment sensitive to magnetostatic fields, DC electricity will never be part of an EMC problem.
Connect the Dots: Proactive Controlled Impedance
05/29/2025 | Matt Stevenson -- Column: Connect the DotsFrom data centers to smartphones, designers know that the ohms have it. Getting impedance right ensures all-important signal integrity and delivers high-performing boards. Our designers understand the importance of controlled impedance, but not everyone addresses it in their designs. The most common and important controlled impedance types we see include microstrip, stripline, embedded microstrip, and differential pairs.
Beyond Design: Radiation and Interference Coupling
05/21/2025 | Barry Olney -- Column: Beyond DesignRadiation and interference coupling pose significant challenges to the performance and reliability of high-speed digital designs. Whether it's the unintended emission of electromagnetic waves or the interaction of signals between adjacent circuits, these phenomena can lead to unwanted noise, signal distortion, and even system malfunctions. Understanding the mechanisms behind radiation and interference coupling is crucial for electronics designers seeking to design robust and efficient systems.
Global PCB Connections: Rigid-flex and Flexible PCBs—The Backbone of Modern Electronics
05/20/2025 | Jerome Larez -- Column: Global PCB ConnectionsIn the past decade, flex and rigid-flex PCB technology has become the fastest-growing market segment. As an increasing number of PCB companies develop the capabilities to fabricate this technology, PCB designers are becoming comfortable incorporating these designs into their products.
Tips to Master the ‘Black Magic’ of RF Design
05/01/2025 | Andy Shaughnessy, Design007For this issue on RF design, I reached out to Zach Peterson, founder of Northwest Engineering Solutions, an engineering design services company in Portland, Oregon. You can find some of Zach’s RF design presentations on YouTube; he does a great job breaking down these complex ideas for PCB designers who are new to the RF side of things. I asked Zach to discuss the challenges facing RF designers, the relevant material considerations, and the layout tips and techniques that can help RF designers master this “black magic” technology.