RealTime with... American Standard Circuits: Thermal Management
December 16, 2021 | Pete Starkey, I-Connect007Estimated reading time: 3 minutes
In the third of a series of three RealTime with... American Standard Circuits intervews, I-Connect007 managing editor Nolan Johnson received knowledgeable and informative answers from Anaya Vardya, John Bushie, and Dave Lackey of American Standard Circuits to his questions on the topic of thermal management.
Anaya Vardya began by clarifying the terminology, describing thermal conductivity as a material property defining how quickly heat was transmitted through a piece of that material, whereas thermal management was about analysing the entire system, trying to understand how much heat was being generated, and using appropriate techniques to dissipate that heat as efficiently as possible. On printed circuit boards, straightforward solutions like thermal vias and heavy copper weights could be used for dispersing heat from packages. He invited Dave Lackey and John Bushie to discuss some of the more esoteric techniques.
Johnson asked Lackey to explain the difference between insulated metal substrates and metal-clad PCBs. There was basically none; both design structures involved bonding the PCB to some sort of metal substrate. A simple example was a single-sided circuit board bonded to an aluminium plate with a thermally conductive adhesive material, such as was commonly used to dissipate heat from LEDs. For additional capability, a double-sided PCB with plated through-holes could be used, fabricated on a substrate of FR-4 or thermally conductive laminate, and bonded to an aluminium plate with thermally conductive prepreg.
Another option was to bond circuits on both sides of a metal core, usually aluminium or copper. The two circuits could operate independently or be interconnected by plated-through-holes drilled through insulating plugs in the metal core. Lackey discussed several alternative metal-backed and metal-core alternatives.
Johnson was interested to learn whether multiple functions could be achieved. Bushie picked up this query. In general, with higher levels of integration and more power per unit area, more attention was paid to thermal management using a variety of techniques and materials, combining multiple functions as well as dealing with the heat. Bushie commented on the increasing convergence of RF and digital circuitry in the same design, together with the growing need for thermal management. People were starting to integrate metal cores into these designs, to decrease the overall package size. His example was a multi-function PCB with the control circuitry on one side of the structure and RF circuitry on the other side. Low-loss RF materials, high-speed digital materials, thermally conductive materials, and metal cores were integrated to increase the functional density of the structure. With flexible circuitry being progressively incorporated to minimise connector real-estate and increase reliability by eliminating cables and connectors, all these materials were coming together into a multifunctional circuit board, and what may have been two, three, or four discrete circuit boards could be combined into one smaller package with a higher level of functionality and a variety of circuit structures.
Johnson remarked that with all these dynamics in play—metals, materials, thermal management—designers were faced with difficult choices, maybe for the first time, often with limited experience. He asked Bushie what advice he would offer.
“This starts to sound like an old song...get your fabricator involved!” Bushie responded. “There’s a wealth of knowledge and applications engineering experience at your fabricator; we’re here to help. At the end of the day, we want to help you design something that we can make—rapidly, reliably, and functioning as you wanted it. Feel free to utilise us.”
In 12 minutes, this RealTime with... ASC video combined a primer in thermal management, an indication of how complex a topic it could turn out to be, and a comforting assurance that there is an abundance of support and assistance available to guide the designer through the maze of material selection and structural possibilities, provided that the fabricator is consulted at the beginning of the process rather than expected to sort out the deficiencies of an inferior design when it is presented for manufacture. I enjoyed the experience!
Pete Starkey is an I-Connect007 technical editor.
Visit I-007eBooks to download your copies of American Standard Circuits’ micro eBooks today:
- The Printed Circuit Designer’s Guide to… Fundamentals of RF/ Microwave PCBs
- The Printed Circuit Designer's Guide to... Flex and Rigid-Flex Fundamentals
- The Printed Circuit Designer’s Guide to …Thermal Management: A Fabricator’s Perspective
Suggested Items
Global PCB Connections: Following DFM Rules Leads to Better Boards
12/18/2024 | Jerome Larez -- Column: Global PCB ConnectionsAs a PCB field applications engineer, ensuring smooth communication between PCB designers and fabricators is one of my frequent challenges. A critical part of that dialogue is design for manufacturing (DFM). Many designers, even experienced ones, often misunderstand or overlook important DFM considerations. They may confuse design rules with manufacturing minimums, leading to technically feasible designs that are difficult or costly to produce. In this column, I will clarify some common DFM guidelines and help designers understand the difference between “design rules” and “minimums” while sharing best practices that will simplify the production process and ensure the highest quality PCB.
Sayonara to the Last Standing Copper Foil Plant in North America
12/17/2024 | Marcy LaRont, I-Connect007In July 2021, PCB007 Magazine published an interview with Michael Coll and Chris Stevens of Nippon Denkai about the new acquisition by Nippon Denkai of the last-standing ED foil manufacturer in North America. The plant in Augusta, Georgia, was formerly owned by Oak Mitsui, Inc. and had been purchased by Nippon Denkai the previous March, after which significant investment was made with the expectation of providing more jobs.
SCHMID Group Unveils Enhanced InfinityLine H+ for Electroless Copper Deposition
12/16/2024 | SCHMID GroupThe SCHMID Group, a global leader in high-tech solutions for the electronics industry, proudly announces significant updates to its flagship InfinityLine H+ Electroless Cu system. Specifically designed for the production of high- performance advanced packaging applications using mSAP and SAP processes, the system reflects SCHMID’s expertise in horizontal electroless copper deposition.
OKI Develops PCB Technology with Stepped Copper Coin Insertion to Achieve 55 Times Better Heat Dissipation in Outer Space
12/12/2024 | BUSINESS WIREThe OKI Group printed circuit board (PCB) business company OKI Circuit Technology has successfully developed multilayer PCB technology with stepped copper coin insertion to achieve 55 times better heat dissipation compared to conventional PCB. The stepped copper coin is offered in two types, circular and rectangular, to suit the shape of the electronic component mounted on the PCB. OTC is working to develop mass-production technologies with the aim of introducing PCBs incorporating this new technology into markets for compact devices or devices used in outer space or other environments where air cooling technology cannot be used.
Fresh PCB Concepts: PCB Plating Process Overview
12/12/2024 | Team NCAB -- Column: Fresh PCB ConceptsIn this installment of Fresh PCB Concepts, Mike Marshall takes the helm stating: PCBs have been the platform for the interconnection of electronic components for decades. Because of process costs and other constraints, such as mechanical properties or size limitations of the alternatives, PCBs will remain the standard low-cost interconnection technology. Rapidly increasing performance and functionality requirements of wireless and high-speed devices have challenged the development and implementation of new manufacturing solutions.