Microchip to Provide Silicon Carbide MOSFETs, Digital Gate Drivers for Mersen’s SiC Power Stack Reference Design
December 21, 2021 | MicrochipEstimated reading time: 3 minutes
E-mobility and renewable energy systems require power management solutions that drive performance and cost efficiencies in addition to speeding up development time. To keep pace with these requirements, Microchip Technology Inc. announced the collaboration with Mersen on their 150 kilovolt-ampere (kVA) three-phase silicon carbide Power Stack Reference Design. Mersen is a global provider of power management solutions for numerous industrial sectors including e-mobility and energy storage.
Mersen’s three-phase SiC Power Stack Reference Design provides system designers with a complete, compact, high-power silicon carbide solution without the need for individual device sourcing, testing and qualification. The Power Stack Reference Design includes Microchip’s silicon carbide power modules and digital gate drivers and Mersen’s bus bar, fuses, capacitors and thermal management, optimally designed together in a single high-performance stack reference design. With Microchip’s 1200V MSCSM120AM042CD3AG silicon carbide MOSFET and AgileSwitch 2ASC-12A1HP digital gate driver, the Power Stack Reference Design enables engineers to rapidly develop high voltage systems using kits predesigned for their applications – reducing time to market by up to six months.
“Microchip customers will benefit from our collaboration with Mersen to provide silicon carbide MOSFETs and digital gate driver solutions,” said Leon Gross, vice president of Microchip’s discrete product business unit. “When power inverter designers can source a proven solution, they can avoid sourcing individual parts and reduce risk through reliability – and that helps avoid downtime. Designers now have an all-in-one evaluation system.”
The Power Stack Reference Design provides 16 kilowatts per liter (kW/l) of power density and up to 130°C Tj, peak efficiency at 98%, with up to 20 kilohertz (kHz) switching frequency. Utilizing Microchip’s rugged silicon carbide MOSFETs and AgileSwitch family of configurable digital gate drivers, the reference design enables engineers to select from 700V and 1200V options in currents up to 750A. Microchip also provides a choice in module construction including baseplate material, Direct Bonding Copper (DBC) ceramic material and die attach method.
“We worked closely with Microchip on the design and development of this silicon carbide Power Stack Reference Design given the availability of highly robust silicon carbide MOSFETs and compatible digital gate drivers from a single source,” said Philippe Roussel, PhD, vice president, Global Strategic Marketing Executive Expert at Mersen. “Thus, we can demonstrate our ability to optimize any inverter topologies from our customers, relying on our line of highly reliable bus bars, capacitors, fuses and cooling systems. The versatile Microchip silicon carbide line-up also gives us the capacity to extend these primary specifications to higher voltage, current and switching frequency to meet every customer’s operating point needs.”
In addition to the products in Mersen’s Power Stack Reference Design, Microchip is a provider of other silicon carbide power solutions including families of MOSFETs and Schottky Barrier diodes from 650V to 1700V, available in bare die and a variety of discrete and multi-chip module packages.
Microchip unifies in-house silicon carbide die production with its low-inductance power packaging and digital gate drivers enabling designers to make efficient, compact and reliable end products. These devices pair well with a comprehensive portfolio of microcontrollers (MCUs), analog and MCU peripherals, plus communication, wireless and security technology, providing system designers across many applications with proven total system solutions.
Development Tools
Microchip’s AgileSwitch 2ASC-12A1HP 1200V dual-channel digital gate driver with Augmented Switching technology is production qualified and fully configurable. The AgileSwitch 2ASC-12A1HP gate driver and next-generation 2ASC-12A2HP are supported by Microchip’s Intelligent Configuration Tool (ICT), an interface allowing users to configure gate driver parameters including the gate switching profiles, system critical monitors and controller interface settings. The ICT, a free-of-charge download, saves development time.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
MKS’ Atotech to Participate in IPCA Electronics Expo 2025
08/11/2025 | AtotechMKS Inc., a global provider of enabling technologies that transform our world, announced that its strategic brands ESI® (laser systems) and Atotech® (process chemicals, equipment, software, and services) will showcase their latest range of leading manufacturing solutions for printed circuit board (PCB) and package substrate manufacturing at the upcoming 17th IPCA Show to be held at Pragati Maidan, New Delhi from August 21-23, 2025.
MKS Showcases Next-generation PCB Manufacturing Solutions at the Thailand Electronics Circuit Asia 2025
08/06/2025 | MKS Instruments, Inc.MKS Inc, a global provider of enabling technologies that transform our world, today announced its participation in Thailand Electronics Circuit Asia 2025 (THECA 2025), taking place August 20–22 at BITEC in Bangkok.
Point2 Technology, Foxconn Interconnect Technology Partner to Revolutionize AI Cluster Scalability with Terabit-Speed Interconnect
08/06/2025 | BUSINESS WIREPoint2 Technology, a leading provider of ultra-low-power, low-latency mixed-signal SoC solutions for multi-terabit interconnect, and Foxconn Interconnect Technology (FIT), a global leader in precision interconnect solutions, have signed a Memorandum of Understanding (MOU) to accelerate the commercialization of next-generation Active RF Cable (ARC) and Near Pluggable e-Tube (NPE) solutions.
Advancing Electrolytic Copper Plating for AI-driven Package Substrates
08/05/2025 | Dirk Ruess and Mustafa Oezkoek, MKS’ AtotechThe rise of artificial intelligence (AI) applications has become a pivotal force driving growth in the server industry. Its challenging requirements for high-frequency and high-density computing are leading to an increasing demand for development of advanced manufacturing methods of package substrates with finer features, higher hole densities, and denser interconnects. These requirements are essential for modern multilayer board (MLB) designs, which play a critical role in AI hardware. However, these intricate designs introduce considerable manufacturing complexities.
Statement from the Global Electronics Association on the July 2025 Tariff on Copper Foil and Electronics-Grade Copper Inputs
07/31/2025 | Global Electronics AssociationWe are disappointed by today’s decision to impose a 50% tariff on imported copper foil and other essential materials critical to electronics manufacturing in the United States.