-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
AT&S’ Magnetic Inlays: Mini Electromagnets for Wireless Charging
March 1, 2022 | AT&SEstimated reading time: 2 minutes

As part of an EU research project, AT&S is developing the next generation of miniaturized inductors that can be integrated into multi-layer printed circuit boards. This makes it possible to implement the smallest voltage converters or ultra-thin, wireless charging devices, which have several advantages compared to the technology currently available.
If you want to supply an electric car with electricity or charge your mobile phone wirelessly, you have to rely on electromagnets, which consist of a core made of ferromagnetic material and a coil wound around it. Such magnetic components are ubiquitous in the electrical and electronics industry and the basis for technical progress in many areas. That is why the European Union, as part of its IPCEI initiative (Important Projects of Common European Interest) in the field of microelectronics, has made research into the next generation of such components a priority.
AT&S is also involved in the project together with more than 30 partners from industry and research. The Styrian high-tech group uses its experience and production capacities in the manufacture of highly complex printed circuit boards to create small electromagnets, which in turn are the basis for integrated components such as inductors or transformers. AT&S engineers are already demonstrating first prototypes, such as a wireless charging device for mobile phones with a printed circuit board just one millimetre thick, at trade fairs.
Micro drilling is reliable
“The magnetic components that are state of the art today are often wound by hand in low-wage countries. With our know-how from printed circuit board production, we can not only manufacture thinner components but also significantly improve reliability,” says Gerald Weidinger, who heads development at AT&S. Instead of winding an actual wire around an iron core, the windings are realized with the finest of holes around a tiny ring of special magnetic materials that have been embedded in circuit board material.
“We drill through the core of the circuit board inside and outside the ring, the holes are then plated with copper and connected with traces below and above the magnet ring. This creates an embedded electromagnet,” says Weidinger. With this technology, thousands of such elements can be produced in parallel on a single panel. This also enables automated quality control, which contributes to the superior reliability of the magnetic elements.
Small is beautiful
AT&S is currently working on perfecting the technology for customers. By expanding the possible performance ranges, additional applications are to be opened up. In addition to smaller wireless chargers and more efficient power supply circuits, the technology is also being expanded to make tiny electromagnets in shapes other than the toro+ids described above. Magnetic layers inside a printed circuit board can also be used to shield sensitive electronic circuits from each other.
Suggested Items
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.