IISc Technology Can Address Automotive Chip Shortage in India
March 14, 2022 | Indian Institute of Science (IISc)Estimated reading time: 3 minutes
The automotive industry worldwide has been facing a serious shortage of chips in recent times, beginning from early 2021. There are several reasons that contribute to this shortage, one of which is the increasing demand for automotive and consumer goods (most of their parts are driven by electronics). Like the rest of the world, Indian automotive manufacturers have also been affected by this shortage significantly.
Researchers at the Indian Institute of Science (IISc) have been collaborating with a semiconductor foundry under the IMPRINT programme of the Government of India, which could provide a solution to address this issue. The IISc team embarked upon developing an indigenous technology platform for manufacturing automotive (analog) chips to be used for commercial and strategic applications.
Automotive chips are different from the conventional processor chips used in devices such as smartphones and laptops. An automotive chip (also referred to as a power ASIC) needs to handle various tasks simultaneously, including instrumentation, sensing and control of various electro-mechanical parts. The electrical interface to these parts operates at higher voltages (5V-80V) compared to a processor chip, which only requires a low voltage switch or transistor (0.9V-1.8V). Developing a technology platform that can offer the wide range of capability required by automotive chips has always been a challenge for the industry and can take 5-6 years, unlike the processor technology platform which typically takes about 1.5-2 years. However, this extra time investment can pay off in terms of a significantly lower obsolescence rate – such chip technologies can last for 15-20 years without having to be replaced.
Automotive chips require high-voltage switches or transistors built onto the chip. These transistors are called Laterally Diffused MOS (LDMOS). Silicon LDMOS devices are a type of field-effect transistors which can operate at much higher voltages than regular transistors. They can also be integrated with billions of other transistors inside a chip. This requirement is also particularly important for space and defense applications.
Keeping these requirements in mind, the IISc team and its foundry partner have been working on developing a range of LDMOS devices (from 10V to 80V) with characteristics matching current industry offerings. The collaborative effort has led to the development of a robust high voltage automotive technology platform.
Technology platforms available in the industry have enabled the capability of developing circuits that can handle voltages ranging from 7V to 80V, significantly increasing the earlier capabilities of domestic partners of 3.3V. Extending this portfolio to 80V by importing technology would have cost tens of millions of USD. This collaborative effort has augmented the baseline process and enabled the development of devices capable of operating at 80V, at a cost of less than 0.5 million USD.
“IISc and its partners worked pretty much like an industrial R&D team and handled the fundamental issues differently, which industry usually handles empirically (by trial-and-error),” explains Prof Mayank Shrivastava (Department of Electronic Systems Engineering) who led the project from IISc. “For example, we could delve deeper into some fundamental issues related to these devices, like Quasi-Saturation behaviour, which hasn’t been completely understood/solved in the past 40+ years. Thanks to the IMPRINT programme for enabling such a development, which is turning out to be a win-win for IISc and its foundry partner.”
Shrivastava adds that the devices developed have been rigorously tested and found to be robust. “These LDMOS devices can now become standard offerings (like any other industry), which will help our foundry partner develop a range of VLSI products in-house. Besides, the technology/knowhow can be transferred to other semiconductor foundries that want to scale up their process from baseline CMOS to an automotive process.”
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
SEMICON West: The Path to a $1 Trillion Future
10/14/2025 | Marcy LaRont, I-Connect007After more than 50 years in San Francisco, SEMICON West moved its 2025 show to Phoenix, which is significant because it highlights the importance of Arizona as a semiconductor and tech hub. Though the show will be back in San Francisco in 2026, the overwhelmingly warm welcome SEMI received from Arizona Governor Katie Hobbs, Phoenix Mayor Kate Gallego, and ASU President Michael Crowe—who has been responsible for ASU repeatedly achieving the U.S. News and World Reports most innovative university ranking—was remarked upon repeatedly. All indications are that SEMICON West may well be back in Phoenix after that 2026 season.
Technica USA Named Exclusive U.S. Distributor for DCT Cleaning Products
10/14/2025 | Technica USATechnica USA is pleased to announce a strategic partnership with DCT USA, LLC, becoming the exclusive master distributor of DCT cleaning products in the United States, effective November 1, 2025.
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Amplifying Innovation: New Podcast Series Spotlights Electronics Industry Leaders
10/08/2025 | I-Connect007In the debut episode, “Building Reliability: KOKI’s Approach to Solder Joint Challenges,” host Marcy LaRont speaks with Shantanu Joshi, Head of Customer Solutions and Operational Excellence at KOKI Solder America. They explore how advanced materials, such as crack-free fluxes and zero-flux-residue solder pastes, are addressing issues like voiding, heat dissipation, and solder joint reliability in demanding applications, where failure can result in costly repairs or even catastrophic loss.
The Training Connection, LLC Welcomes Industry Veteran Jack Harris to Lead Training Partnerships
10/07/2025 | The Training Connection LLCThe Training Connection, LLC (TTC-LLC), a premier provider of test engineering and development training, is proud to announce that Jack Harris, one of the most recognized names in electronics manufacturing training and technical development, has joined the company as Relationship Lead, Training.