IISc Technology Can Address Automotive Chip Shortage in India
March 14, 2022 | Indian Institute of Science (IISc)Estimated reading time: 3 minutes
The automotive industry worldwide has been facing a serious shortage of chips in recent times, beginning from early 2021. There are several reasons that contribute to this shortage, one of which is the increasing demand for automotive and consumer goods (most of their parts are driven by electronics). Like the rest of the world, Indian automotive manufacturers have also been affected by this shortage significantly.
Researchers at the Indian Institute of Science (IISc) have been collaborating with a semiconductor foundry under the IMPRINT programme of the Government of India, which could provide a solution to address this issue. The IISc team embarked upon developing an indigenous technology platform for manufacturing automotive (analog) chips to be used for commercial and strategic applications.
Automotive chips are different from the conventional processor chips used in devices such as smartphones and laptops. An automotive chip (also referred to as a power ASIC) needs to handle various tasks simultaneously, including instrumentation, sensing and control of various electro-mechanical parts. The electrical interface to these parts operates at higher voltages (5V-80V) compared to a processor chip, which only requires a low voltage switch or transistor (0.9V-1.8V). Developing a technology platform that can offer the wide range of capability required by automotive chips has always been a challenge for the industry and can take 5-6 years, unlike the processor technology platform which typically takes about 1.5-2 years. However, this extra time investment can pay off in terms of a significantly lower obsolescence rate – such chip technologies can last for 15-20 years without having to be replaced.
Automotive chips require high-voltage switches or transistors built onto the chip. These transistors are called Laterally Diffused MOS (LDMOS). Silicon LDMOS devices are a type of field-effect transistors which can operate at much higher voltages than regular transistors. They can also be integrated with billions of other transistors inside a chip. This requirement is also particularly important for space and defense applications.
Keeping these requirements in mind, the IISc team and its foundry partner have been working on developing a range of LDMOS devices (from 10V to 80V) with characteristics matching current industry offerings. The collaborative effort has led to the development of a robust high voltage automotive technology platform.
Technology platforms available in the industry have enabled the capability of developing circuits that can handle voltages ranging from 7V to 80V, significantly increasing the earlier capabilities of domestic partners of 3.3V. Extending this portfolio to 80V by importing technology would have cost tens of millions of USD. This collaborative effort has augmented the baseline process and enabled the development of devices capable of operating at 80V, at a cost of less than 0.5 million USD.
“IISc and its partners worked pretty much like an industrial R&D team and handled the fundamental issues differently, which industry usually handles empirically (by trial-and-error),” explains Prof Mayank Shrivastava (Department of Electronic Systems Engineering) who led the project from IISc. “For example, we could delve deeper into some fundamental issues related to these devices, like Quasi-Saturation behaviour, which hasn’t been completely understood/solved in the past 40+ years. Thanks to the IMPRINT programme for enabling such a development, which is turning out to be a win-win for IISc and its foundry partner.”
Shrivastava adds that the devices developed have been rigorously tested and found to be robust. “These LDMOS devices can now become standard offerings (like any other industry), which will help our foundry partner develop a range of VLSI products in-house. Besides, the technology/knowhow can be transferred to other semiconductor foundries that want to scale up their process from baseline CMOS to an automotive process.”
Suggested Items
Hanon Systems Wins Third PACE Award for Visible-Light LED Photocatalyst Technology
04/18/2025 | PRNewswireHanon Systems, a leading global automotive thermal management supplier and subsidiary of Hankook & Company Group, has been named a winner of the 2025 PACE Awards. This marks the company's third win, making it the first Korean supplier to achieve this recognition.
Real Time with... IPC APEX EXPO 2025: Aster–Enhancing Design for Effective Testing Strategies
04/18/2025 | Real Time with...IPC APEX EXPOWill Webb, technical director at Aster, stresses the importance of testability in design, emphasizing early engagement to identify testing issues. This discussion covers the integration of testing with Industry 4.0, the need for good test coverage, and adherence to industry standards. Innovations like boundary scan testing and new tools for cluster testing are introduced, highlighting advancements in optimizing testing workflows and collaboration with other tools.
Can the Electronics Industry Balance Tariffs With Investment?
04/18/2025 | I-Connect007 Editorial TeamTo better understand the U.S. administration’s recent actions on global trade policies, Barry Matties and Nolan Johnson met with Richard Cappetto, IPC’s senior director of North American government relations, who highlighted both the challenges and opportunities available to U.S. companies in the recent trade activity. This could include increased domestic manufacturing and supply chain diversification.
University of Arizona Pioneering Technical Education Beyond Semiconductors
04/18/2025 | Marcy LaRont, PCB007 MagazineWhile many universities struggle to keep their curriculum up to date with the evolving needs of the electronics industry, the University of Arizona stands head and shoulders above the others. Its Center for Semiconductor Manufacturing incorporates five of the colleges at UA and emphasizes an interdisciplinary approach to prepare students for diverse careers in technology and manufacturing.
IPC Strengthens Electronics Industry Awareness with Appointment of Carrie Sessine as Global Communications Vice President
04/16/2025 | IPCIPC, the global electronics association, announces the strategic appointment of Carrie Sessine as vice president of global communications. This newly created executive position underscores the association’s commitment to championing the electronics industry's critical contributions to global innovation and economic growth.