Argonne Pioneers New Processes to Create Materials for Batteries, Biofuels
March 22, 2022 | Argonne National LaboratoryEstimated reading time: 3 minutes
When recycling cans and bottles, at some point it becomes necessary to separate out plastic from metal. When recycling car batteries, getting out the most valuable metals also requires a separation, but this time it entails a specific kind of chemical separation process.
The cobalt, manganese and nickel found in battery cathodes are expensive to mine and scientists have for years sought a way to create new batteries from spent ones.
When a car battery reaches the end of its life, it goes to an automotive shredder that chops it up. Getting out the useful chemicals from these chopped up batteries is no easy task. Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have turned to a process called capacitive deionization that uses the electric charges of nickel, manganese and cobalt to select them out from the waste stream.
“There are different separation technologies used for different purposes, based on physical principles, chemical principles and electrochemical principles,” said Argonne engineer Lauren Valentino. ?“There’s only so much you can do with mechanical processes in the first step, so we turn to things like membrane, adsorbent and capacitive deionization technologies, which can all be used to recapture chemicals of interest.”
According to Valentino, battery recycling is complicated because not all car batteries are the same. ?“It’s hard to control what you get when it comes time to recycle a car battery,” she said. ?“When the battery is shredded, you have all sorts of things mixed together — cathode, anode, electrolyte and separator.”
Recycling a battery requires breaking down and separating large chemical components into basic elements. ?“Building a battery is like building a tower out of Legos,” Valentino said. ?“You use small blocks with different shapes to build a tower, but if you want to re-build, you have to take apart and sort all of the bricks to get what you need.”
One major advantage of capacitive deionization is that it is flexible. According to Valentino, it can be used to accommodate different materials and various operating strategies by controlling flow rates and operating time. ?“By controlling both the material and how it is implemented, we’re able to really tailor the elements and chemicals that we’re separating out,” she said.
The capacitive deionization process that Valentino and her colleagues use for battery recycling also has uses in other areas, including bioenergy production. Valentino leads the Bioprocessing Separations Consortium, a group of researchers from six national laboratories that together research and develop separations processes and technology needed for the conversion of biomass to biofuel. (The group was established in 2016 by DOE’s Bioenergy Technologies Office within the Office of Energy Efficiency and Renewable Energy.)
“At some point there is a conversion step followed by a separations process,” Valentino said. ?“What comes out of these reactors is a complex mixture with many different components, and we have to be able to isolate and concentrate the products of interest in the system to catalytically upgrade them to produce the biofuels we’re after.”
Unlike the battery recycling technology, which targets positively charged ions, bioenergy production requires Valentino and her colleagues to search for negatively charged molecules. ?“Essentially, our capacitive deionization acts like a ?‘claw’ that picks out the molecules we’re interested in.”
Once separated, these compounds are versatile and can be converted into hydrocarbon biofuels, such as renewable diesel or sustainable aviation fuel. ?“We are just beginning to explore the different ways in which more efficient separations can make transportation more sustainable,” she said.?“There’s still much we have left to discover.”
This research was performed in collaboration with NUMiX Materials and was funded, in part, by the National Science Foundation.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
The Right Approach: Electro-Tek—A Williams Family Legacy, Part 1
10/15/2025 | Steve Williams -- Column: The Right ApproachThere is no bronze bust in the lobby or portrait in the conference room of Electro-Tek's founder—my Dad, Charles “Chuck” Williams—so with the facility closing last year after 56 years, I feel it is time to tell the story. Chuck Williams founded Electro-Tek in 1968 in our basement, eventually moving into the second floor of an old 1913 building in downtown Milwaukee that is still standing (the first of three eventual facilities).
ICT Symposium Review: Sustainability and the Circular Economy
10/09/2025 | Pete Starkey, I-Connect007It was pleasant autumnal weather as we made our way once again to Meriden, the nominal centre of England, for the 2025 Annual Symposium of the Institute of Circuit Technology. Delegates were welcomed by technical director Emma Hudson who introduced and moderated a skilfully coordinated programme, focused on the highly relevant theme of sustainability.
Hardware Engineers, Manufacturing Leaders Ready to ‘Build Better’ Electronics
10/06/2025 | Marcy LaRont, I-Connect007According to Instrumental’s dynamic CEO, Anna-Katrina Shedletsky, the Build Better Electronics Manufacturing Summit on Sept. 30 was a passion project meant to provide a forum for hardware engineering senior leadership, who have very busy jobs and limited opportunities, to share information, thought leadership, and networking opportunities. “Build Better is really about cross-pollination and sharing,” she said, as she highlighted the importance of supporting this type of sharing in tech, which may be more important than ever before.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
10/03/2025 | Andy Shaughnessy, I-Connect007It’s been a busy week. We’ve been covering PCB West, and we’ll be bringing you a variety of news and interviews from the show in the next few weeks. We’ll also be attending SMTA International later this month, and productronica as trade show season rolls on. This week, we have a number of interesting columns and news items. We start with a positive story about North American PCB sales, which were heading in the right direction in August. Don Ball writes about the ins and out of working with overseas partners, and there’s a great column by Dan Beaulieu on avoiding the temptation to offer discounts when your customer gets squirrely.
Understanding Signal Integrity, the Foundation of High-Speed Digital Design
09/25/2025 | Stephen V. Chavez, Siemens EDASignal integrity has become a critical factor in ensuring reliable performance in high-speed digital systems. As data rates continue to increase, engineers must understand the fundamental principles that govern how signals propagate through transmission lines and how to mitigate common issues that can degrade signal quality.