Pusan National University Scientists Review Progress in Wearable Energy Harvesting and Storage
March 25, 2022 | PRNewswireEstimated reading time: 2 minutes
Wearable electronic devices are becoming increasingly smaller and more complex. As a result, it has become challenging to provide them with sufficient energy. In a recent review, Pusan National University scientists take stock of the latest developments in energy harvesting and storage technology for wearable devices, with a focus on nanomaterials and their assembly into various macroscale structures. Their work aims to accelerate the design of wearable technology and shape their future demands.
Wearable electronic devices have evolved a lot in recent years, unlocking novel applications in healthcare, fitness monitoring, data collection, communication, and more. However, the natural progression towards smaller, lighter, more complex, and multifunctional wearables has also made it more challenging to provide these devices with suitable energy sources. Fortunately, research is being conducted on different methods to meet the energy demands of next-generation wearable devices.
In particular, nanoscale materials, if assembled into appropriate macroscale structures, can not only provide the flexibility that wearables need but also harvest and store the necessary energy for operation through various mechanisms. In a recent paper published in Advanced Functional Materials, an international research team reviewed the latest progress in energy harvesting and energy storage for wearable devices using structured nanomaterials. The team included Assistant Professor Ha Beom Lee of Pusan National University, Professor Seung Hwan Ko of Seoul National University, and Dr. Hyun Kim of Korea Research Institute of Chemical Technology in Korea.
There are many different ways to harvest energy in wearable devices and convert it to electricity. Some of the most promising mechanisms include biomechanical energy harvesters, which gather energy from the natural motions of the human body, biothermal energy harvesters, which produce electricity from body heat, and wearable solar cells. The article also delves into energy storage technologies, such as wearable batteries and supercapacitors, and hybrid devices, which combine multiple forms of energy harvesting and/or storage in a single package.
In particular, the review focuses on how different types of nanomaterials can be used in 1D, 2D, and 3D structures and configurations for energy harvesting and storage, outlining the main advantages and limitations of each. "Our comprehensive overview on nanomaterials and their properties, advanced processes, optimized structural design, and integration strategies for energy devices will contribute to the practical deployment of power systems that can be used in wearables in the near future," remarks Dr. Lee.
Overall, this work should help shape the future demand for self-sustainable wearable devices, which will include smartphones, watches, glasses, tattoos, textiles, e-skin sensors, and healthcare devices. Dr. Lee concludes by highlighting important research directions to accelerate the development of wearable technology: "Further studies should focus on refining nanoscale materials, structures, and interfaces, develop appropriate macroscale device configurations tailored for specific applications, and propose integration strategies to synergistically combine multiple energy harvesting and storage units to achieve reliable operation."
Hopefully, the review article will help researchers become updated and inspire new ideas, speeding up the development of wearable electronics and, eventually, their integration into our daily lives.
Suggested Items
Zhen Ding Promotes Digital Transformation and Embraces AI Business Opportunities
06/06/2025 | Zhen Ding TechnologyOn May 27, 2025, General Manager Chen-Fu Chien of Zhen Ding Technology Group was invited to attend the "2025 Two Thousand Forum" held by The CommonWealth Magazine.
Leidos Using Quantum Technology to Thwart GPS Jamming
06/05/2025 | PRNewswireSusceptibility to jamming is a significant military vulnerability of the Global Positioning System (GPS) signal. Through a Defense Innovation Unit contract, Leidos is developing an alternative navigation technology that measures variations in the Earth's magnetic field and harnesses the quantum properties of nitrogen in diamonds.
Growing Demand for Mid-Size Displays Opens New Opportunities for FMM-Free OLED Technologies
06/05/2025 | TrendForceTrendForce’s latest report on the display industry reveals that OLED technology—valued for its self-emissive structure, high contrast ratio, and lightweight design—continues to expand its market presence, primarily in small-size applications such as smartphones.
Orbel Corporation Integrates Schmoll Direct Imaging
06/04/2025 | Schmoll AmericaOrbel Corporation in Easton, PA, proudly becomes the first PCM facility in the U.S. equipped with Schmoll’s MDI Direct Imaging system. This installation empowers Orbel to support customers with greater precision and quality.
BAE Systems Unveils Comprehensive Line of M-Code GPS Receivers at Joint Navigation Conference
06/04/2025 | PRNewswireBAE Systems unveiled a diverse line of M-Code Global Positioning System (GPS) receiver solutions at the Joint Navigation Conference in Cincinnati this week, rounding out an extensive line of products that ensure U.S. warfighters have the most dependable GPS systems available across sea, land, and air.