Intel, QuTech Collaborate to Produce Silicon Qubits at Scale
April 15, 2022 | IntelEstimated reading time: 1 minute
Researchers at Intel and QuTech, an advanced quantum computing research center consisting of the Delft University of Technology (TU Delft) and the Netherlands Organization for Applied Scientific Research (TNO), have successfully created the first silicon qubits at scale at Intel’s D1 manufacturing factory in Hillsboro, Oregon. The result is a process that can fabricate more than 10,000 arrays with several silicon-spin qubits on a single wafer with greater than 95% yield. This achievement is dramatically higher in both qubit count and yield than the typical university and laboratory processes used today.
This research was published in the journal Nature Electronics and is Intel’s first peer-reviewed research demonstrating the successful fabrication of qubits on 300mm silicon. The new process uses advanced transistor fabrication techniques including all-optical lithography to produce silicon-spin qubits, the same equipment used to produce Intel’s latest-generation complementary metal-oxide-semiconductor (CMOS) chips. The groundbreaking research is a crucial step forward in the path toward scaling quantum chips, demonstrating that it’s possible for qubits to eventually be produced alongside conventional chips in the same industrial manufacturing facilities.
“Quantum computing has the potential to deliver exponential performance for certain applications in the high-performance compute space,” said James Clarke, director of Quantum Hardware at Intel. “Our research proves that a full-scale quantum computer is not only achievable but also could be produced in a present-day chip factory. We look forward to continuing to work with QuTech to apply our expertise in silicon fabrication to unlock the full potential of quantum.”
Suggested Items
Keysight, Synopsys Deliver an AI-Powered RF Design Migration Flow
06/06/2025 | BUSINESS WIREKeysight Technologies, Inc. and Synopsys, Inc. introduced an AI-powered RF design migration flow to expedite migration from TSMC’s N6RF+ process to N4P technology, to address the performance requirements of today’s most demanding wireless integrated circuit applications.
IPC Releases Latest Standards and Revisions Updates
06/05/2025 | IPCEach quarter, IPC releases a list of standards that are new or have been updated. To view a complete list of newly published standards and standards revisions, translations, proposed standards for ballot, final drafts for industry review, working drafts, and project approvals, visit ipc.org/status. These are the latest releases for Q1 2025.
STARTEAM GLOBAL Unveils Innovative Additive Solder Mask Process
06/02/2025 | STARTEAM GLOBALSTARTEAM GLOBAL, a leading PCB manufacturer, has introduced a revolutionary additive solder mask process at its Flero STARTEAM (FST) factory in Italy, leveraging digital inkjet technology to enhance production efficiency and sustainability.
Advint Delivers Advanced Electroplating Training to Triangle Labs
06/02/2025 | Advint IncorporatedDuring the last week of April, Advint Incorporated conducted a comprehensive two-day on-site electroplating training session for the technical team at Triangle Labs, Inc., a key innovator in the printed circuit board space. The training was structured to align with the demands of high-reliability plating processes suitable for RF and high-frequency substrates.
The Chemical Connection: Reducing Defects in Circuit Board Production
06/04/2025 | Don Ball -- Column: The Chemical ConnectionWe all agree that in any manufacturing process, reducing defects in your product induced during manufacture (aka increasing yields) is a good thing. Doing so, however, can be a source of contention and frustration. I don’t pretend to be an expert in this field, because most of my work involves feasibility studies for new concepts or testing improvements made to existing equipment. High yields were usually not a factor; it’s simply about having enough data to prove or disprove a concept or seeing whether improvements to equipment design actually work. However, here are some observations I made visiting quality shops where high production at high yields was important.